1. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977;198:1264-1267.
2. Ehlis AC, Schneider S, Dresler T, Fallgatter AJ. Application of functional near-infrared spectroscopy in psychiatry. Neuroimage 2014;85:478-488.
3. Kasai K, Fukuda M, Yahata N, Morita K, Fujii N. The future of realworld neuroscience: imaging techniques to assess active brains in social environments. Neurosci Res 2015;90:65-71.
4. Maki A, Yamashita Y, Ito Y, Watanabe E, Mayanagi Y, Koizumi H. Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med Phys 1995;22:1997-2005.
5. Hoshi Y, Tamura M. Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol (1985) 1993;75:1842-1846.
6. Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 1993;154:101-104.
8. Kato T, Kamei A, Takashima S, Ozaki T. Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J Cereb Blood Flow Metab 1993;13:516-520.
10. Fukuda M. Near-infrared spectroscopy in psychiatry. Brain Nerve 2012;64:175-183.
11. Takahashi T, Takikawa Y, Kawagoe R, Shibuya S, Iwano T, Kitazawa S. Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage 2011;57:991-1002.
13. Kawano M, Kanazawa T, Kikuyama H, Tsutsumi A, Kinoshita S, Kawabata Y, et al. Correlation between frontal lobe oxy-hemoglobin and severity of depression assessed using near-infrared spectroscopy. J Affect Disord 2016;205:154-158.
16. Loonstra AS, Tarlow AR, Sellers AH. COWAT metanorms across age, education, and gender. Appl Neuropsychol 2001;8:161-166.
17. Hirth C, Obrig H, Villringer K, Thiel A, Bernarding J, Muhlnickel W, et al. Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy. Neuroreport 1996;7:1977-1981.
18. Watanabe E, Maki A, Kawaguchi F, Takashiro K, Yamashita Y, Koizumi H, et al. Non-invasive assessment of language dominance with nearinfrared spectroscopic mapping. Neurosci Lett 1998;256:49-52.
19. Hoshi Y, Tamura M. Near-infrared optical detection of sequential brain activation in the prefrontal cortex during mental tasks. Neuroimage 1997;5:292-297.
20. Matsubara T, Matsuo K, Nakashima M, Nakano M, Harada K, Watanuki T, et al. Prefrontal activation in response to emotional words in patients with bipolar disorder and major depressive disorder. Neuroimage 2014;85:489-497.
21. Fujita K, Maekawa H, Dairoku K, Yamanaka K. A Japanese Version of the WAIS-III. Tokyo: Nihon Bunka Kagakusha; 2006.
22. First MB, Spitzer RL, Gibbon M, Williams JB. Structured Clinical Interview for DSM-IV-TR Axis I Disorders. Research Version, Patient Edition. New York: Biometrics Research, New York State Psychiatric Institute; 2002.
23. Takahashi S, Kitamura N, Okano T, Tomita T, Kikuchi A. Japanese version of Structured clinical interview for DSM-IV axis I disorders SCIDI. Tokyo: Nihon Hyoronsha; 2003.
24. Pendleton MG, Heaton RK, Lehman RA, Hulihan D. Diagnostic utility of the thurstone word fluency test in neuropsychological evaluations. J Clin Neuropsychol 1982;4:307-317.
25. Curtis VA, Bullmore ET, Brammer MJ, Wright IC, Williams SC, Morris RG, et al. Attenuated frontal activation during a verbal fluency task in patients with schizophrenia. Am J Psychiatry 1998;155:1056-1063.
27. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J. Self-referential processing in our brain--a meta-analysis of imaging studies on the self. Neuroimage 2006;31:440-457.
28. Ingvar DH. “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol Scand 1979;60:12-25.
30. Grimm S, Ernst J, Boesiger P, Schuepbach D, Hell D, Boeker H, et al. Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical-cortical midline structures. Hum Brain Mapp 2009;30:2617-2627.
32. Lemogne C, Delaveau P, Freton M, Guionnet S, Fossati P. Medial prefrontal cortex and the self in major depression. J Affect Disord 2012;136:e1-e11.
35. Liu X, Sun G, Zhang X, Xu B, Shen C, Shi L, et al. Relationship between the prefrontal function and the severity of the emotional symptoms during a verbal fluency task in patients with major depressive disorder: a multi-channel NIRS study. Prog Neuropsychopharmacol Biol Psychiatry 2014;54:114-121.
36. Koseki S, Noda T, Yokoyama S, Kunisato Y, Ito D, Suyama H, et al. The relationship between positive and negative automatic thought and activity in the prefrontal and temporal cortices: a multi-channel near-infrared spectroscopy (NIRS) study. J Affect Disord 2013;151:352-359.
38. Pu S, Nakagome K, Yamada T, Ikezawa S, Itakura M, Satake T, et al. A pilot study on the effects of cognitive remediation on hemodynamic responses in the prefrontal cortices of patients with schizophrenia: a multichannel near-infrared spectroscopy study. Schizophr Res 2014;153:87-95.