2. Doyle-Lindrud S. Watson will see you now: a supercomputer to help clinicians make informed treatment decisions. Clin J Oncol Nurs 2015;19:31-32.
4. Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000;30:205-223.
5. Lord C, Petkova E, Hus V, Gan W, Lu F, Martin DM, et al. A multisite study of the clinical diagnosis of different autism spectrum disorders. Arch Gen Psychiatry 2012;69:306-313.
7. Song DY, Kim SY, Bong G, Kim JM, Yoo HJ. The use of artificial intelligence in screening and diagnosis of autism spectrum disorder: a literature review. J Korean Acad Child Adolesc Psychiatry 2019;30:145-152.
10. Opitz D, Maclin R. Popular ensemble methods: an empirical study. J Artif Intell Res 1999;11:169-198.
11. Oshiro TM, Perez PS, Baranauskas JA. How Many Trees in a Random Forest?. In: Perner P, editor. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Berlin, Heidelberg: Springer, 2012, p. 154-168.
12. Rokach L. Decision forest: twenty years of research. Inf Fusion 2016;27:111-125.
13. Hastie TJ. Statistical Models in S. New York: Routledge; 2017.
14. Oza NC, Tumer K. Classifier ensembles: select real-world applications. Inf Fusion 2008;9:4-20.
15. Marsland S. Machine Learning?: An Algorithmic Perspective. Boca Raton: CRC Press; 2014.
16. Breiman L. Bagging predictors. Mach Learn 1996;24:123-140.
18. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997;55:119-139.
19. Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, et al. Feature selection: a data perspective. ACM Compuing Surv 2017;50:94
20. Quinlan JR. Induction of decision trees. Mach Learn 1986;1:81-106.
21. Dietterich TG. Experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 2000;40:139-157.
22. Criminisi A, Shotton J. Decision Forests for Computer Vision and Medical Image Analysis. London: Springer-Verlag; 2013.
23. Duda M, Kosmicki JA, Wall DP. Testing the accuracy of an observation-based classifier for rapid detection of autism risk. Transl Psychiatry 2011;4:e424.
24. Jin S, Yoo HJ, Park M. Discriminant model for diagnosing Korean autism spectrum disorders. J Korean Data Anal Soc 2013;15:669-676.
25. Kelarev AV, Abawajy J, Stranieri A, Jelinek HF. Empirical investigation of decision tree ensembles for monitoring cardiac complications of diabetes. Int J Data Warehouse Min 2013;9:1-18.