Systematic Review of the Neural Effect of Electroconvulsive Therapy in Patients with Schizophrenia: Hippocampus and Insula as the Key Regions of Modulation

Sun-Young Moon1,2, Minah Kim1,2, Silvia Kyungjin Lho1,2, Sanghoon Oh1,2, Se Hyun Kim1,2, and Jun Soo Kwon1,2,3,4

1Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
2Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
3Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
4Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea

Objective Electroconvulsive therapy (ECT) has been the most potent treatment option for treatment-resistant schizophrenia (TRS). However, the underlying neural mechanisms of ECT in schizophrenia remain largely unclear. This paper examines studies that investigated structural and functional changes after ECT in patients with schizophrenia.

Methods We carried out a systematic review with following terms: 'ECT', 'schizophrenia', and the terms of various neuroimaging modalities.

Results Among the 325 records available from the initial search in May 2020, 17 studies were included. Cerebral blood flow in the frontal, temporal, and striatal structures was shown to be modulated (n=3), although the results were divergent. Magnetic resonance spectroscopy (MRS) studies suggested that the ratio of N-acetyl-aspartate/creatinine was increased in the left prefrontal cortex (PFC; n=2) and left thalamus (n=1). The hippocampus and insula (n=6, respectively) were the most common regions of structural/functional modulation, which also showed symptom associations. Functional connectivity of the default mode network (DMN; n=5), PFC (n=4), and thalamostriatal system (n=2) were also commonly modulated.

Conclusion Despite proven effectiveness, there has been a dearth of studies investigating the neurobiological mechanisms underlying ECT. There is preliminary evidence of structural and functional modulation of the hippocampus and insula, functional changes in the DMN, PFC, and thalamostriatal system after ECT in patients with schizophrenia. We discuss the rationale and implications of these findings and the potential mechanism of action of ECT. More studies evaluating the mechanisms of ECT are needed, which could provide a unique window into what leads to treatment response in the otherwise refractory TRS population.

INTRODUCTION

Schizophrenia affects approximately 1% of global population, with more than 21 million patients worldwide.1 Treatment-resistant schizophrenia (TRS) is defined as the absence of a response after two different antipsychotics at an adequate dosage and duration. Twenty to 50% of patients with schizophrenia are considered treatment-resistant,2,4 and, not surprisingly, treatment-resistance results in an additional socioeconomic burden that is approximately 3 to 11 times greater than the burden experienced by patients with schizophrenia who remain in remission.5 The treatment of choice for these patients is to introduce the medication clozapine,2,4,6 but 40% to 70% of treatment-resistant patients will not respond to clozapine,7 leaving 14% to 20% of all patients with schizophrenia to be treatment refractory without better treatment options.5

Electroconvulsive therapy (ECT) was first introduced to treat schizophrenia before antipsychotic medication was available.1 After the late 1950s, with the advent of antipsychotic agents, the use of ECT in schizophrenia declined worldwide,9
with its primary indication being catatonia, psychotic depression, suicidality, and drug intolerability. Although its main pattern of use somewhat differs among countries (according to a systematic review in 2011, in the United States, Europe and Australia, 8–29% of patients receiving ECT were patients with schizophrenia, while in Asia and Africa it was 60–83%), ECT is currently most commonly used for patients with treatment-resistant depression, where its efficacy is robust and superior compared to the standard combination of antidepressants. TRS is another clinical group in which ECT is commonly used to augment standard antipsychotic treatment. A large volume of clinical research literature and systematic reviews along with an increasing number of treatment guidelines support the addition of ECT to antipsychotic agent regimens, including a recent review from the Cochrane systematic reviews. Considering the prevalence and rather striking socioeconomic consequences of TRS, clinicians have argued that ECT should not be used as the ‘last resort’ and that it should be increasingly applied to patients with schizophrenia.

Despite this context of robust effectiveness, the underlying mechanism of action of ECT has largely remained elusive. Historically, the generalized seizure hypothesis, changes in neurotransmitters and neuroendocrine function hypothesis, and the neurotrophic hypothesis has been postulated as working models of ECT. Recent studies examining depressive patients have consistently found increased bilateral hippocampal volumes by ECT, providing support for the neurotrophic hypothesis, but correlations between volumetric changes and clinical improvements were found to be repeatedly inconclusive, leaving out the main ‘key’ factor regarding the long unanswered question of ECT’s clinical effectiveness. Furthermore, the factors leading to clinical improvement after ECT in schizophrenia patients are cryptic, with only a small number of studies and divergent findings. This is indicative of a largely underrepresented current state of research for a disease with such great burden and the tantalizing problems of obstinacy. Identification and delineation of the common and disease-specific effects of ECT can serve to provide insights into the currently ‘untreatable’ TRS population, which constitutes a major problem in the modern practice of psychiatry. Thus, we aimed to systematically review the current status of research investigating the effects of ECT in schizophrenia patients using, utilizing etc. various neuroimaging modalities.

METHODS

PubMed, EMBASE, and the Cochrane Reviews were searched for publications with the following keywords: ‘ECT’, ‘schizophrenia’, and the terms of various neuroimaging modalities. Studies available based on the search by May 1, 2020, were included. We intended to include articles that examined patients with schizophrenia undergoing ECT sessions and implemented at least one neuroimaging modality according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. Articles published before the 1990s were excluded owing to two reasons: 1) to minimize the heterogeneity among study methods, and because 2) earlier studies tended to focus on deleterious side effects of ECT. While ECT can bring about selective cognitive side effects such as acute delirium or impairments in autobiographic memory, it is nowadays widely agreed that ECT does not cause other severe long-lasting side effects such as brain damage or dementia. Detailed descriptions of the methods are provided in the supplementary methods in the supplementary material.

RESULTS

Study selection and characteristics

During the initial search, 325 articles were found, and after removing 3 duplicates, 322 articles were screened. A total of 305 records that unmet the inclusion criteria were excluded after abstract screening (PRISMA flowchart, Figure 1).

A total of 17 studies were selected and considered eligible for inclusion in the current review. Three of the studies explored the role of ECT in changes in cerebral blood flow (CBF), 3 studies used magnetic resonance spectroscopy (MRS) to measure changes in brain metabolites, and 11 studies used magnetic resonance imaging (MRI) as the study modality (6 structural and 8 functional studies, with 3 using both modalities). Detailed information about each study eligible for inclusion in the review is provided in Supplementary Results and Supplementary Table 1 in the Supplementary Materials (in the online-only Data Supplement).

Effect of ECT on cerebral blood flow

Three studies measured changes in CBF using differing study modalities, namely, of positron emission tomography (PET), single-photon emission computed tomography (SPECT), and near-infrared spectroscopy (NIRS) (Table 1).

A PET study reported decreased CBF in the bilateral frontal lobes, right temporal lobe, and right putamen after ECT (n=5) compared to controls (n=6). In another study, CBF in the right parietal and bilateral temporal lobes measured using SPECT was increased in patients with schizophrenia (n=5) compared to MDD patients (n=5). A NIRS study revealed an increased blood flow ratio of the left prefrontal cortex (PFC) to right PFC in patients with schizophrenia (n=11) after ECT, an asymmetry that was not observed in the MDD (n=10) group.
Effect of ECT on brain metabolites

Three studies examined the changes in brain metabolites using MRS (Table 2). Two independent studies (n=34 and n=10) revealed changes of N-acetyl-aspartate/creatine (NAA/Cr) ratio in the left PFC and the left thalamus.39,40 Another study showed an increase in medial prefrontal γ-aminobutyric acid (GABA) levels (n=14).41

Effect of ECT on brain structures

Six studies investigated structural changes after ECT in patients with schizophrenia. Table 3 demonstrates the findings of each study according to the method of analysis [whole-brain analysis or region-of-interest (ROI) analysis]. Notably, three datasets from three different study groups were analyzed, and using different and complementary analysis methods, a total of six publications were included. This relatively small number of studies may be partially attributed to the relatively restricted use of ECT in some parts of the world, with varying treatment guidelines across nations, and a series of index ECT treatments require approximately one month to perform, which raises the issue of accessibility.

One group compared the effects of ECT on patients with schizophrenia (n=9) and MDD (n=12).52,43 Based on the results of the whole-brain analysis, the authors found that the gray matter volume (GMV) in the medial temporal lobe (MTL) network and the left dorsolateral prefrontal cortex (DLPFC) increased in patients with schizophrenia after ECT.52 An additional complementary analysis of the temporal regions re-
vealed that increases in volumes of the hippocampus and insula were shared by patients with schizophrenia and MDD, but were restricted to the right side. The post hoc within-group analyses only revealed increased GMV in the right insula in the schizophrenia group.

Another group examined the effects of ECT on patients with schizophrenia (i.e., ECT+antipsychotic medication; n=21) compared with schizophrenia patients who did not receive ECT and underwent antipsychotic treatment only (n=21). Whole-brain analyses showed increased GMVs in the bilateral parahippocampal gyri/hippocampi, right temporal pole/right superior temporal gyrus (STG), and right insula after ECT compared to baseline and the antipsychotics only group. Additional ROI analyses of the insula and hippocampus indicated increased GMVs in the bilateral dorsal anterior insula and posterior insula and bilaterally increased hippocampal volumes. An analysis stratified according to response status to ECT further showed that higher baseline volumes in the left hippocampus-amygdala transition area (HATA) were observed in responders.

A separate study group reported that baseline GMVs in the temporal region, including the right insula, left middle temporal gyrus (MTG), and the right STG, along with the left inferior frontal gyrus (IFG), predicted ECT response. While the specific findings differed among studies, reviewed results overlap in findings of increased GMVs in the hippocampus and insula (whole-brain analysis, n=2; ROI analysis, n=2). The results from the aforementioned studies suggest rsFC of the hippocampus to the PFC and the hippocampus to the DMN, and between the thalamus and regions of the temporal lobe and cerebellum.

The third group simulated electrical fields of ECT stimulation to select regions with large electrical fields, and compared the changes in those regions before and after ECT (n=47). After ECT, rsFC between the right amygdala and left hippocampus was increased compared to baseline.

The fourth group observed altered rsFC within various networks, including the DMN and temporal lobe networks, in the ECT group compared with antipsychotics only group. The results from the aforementioned studies suggest rsFC of the DMN and associated regions (n=5), PFC (n=4), thalamus (n=2), hippocampus (n=2) and insula (n=2) were commonly altered after ECT.

Effect of ECT on functional connectivity

Eight studies from four different groups examined resting-state functional connectivity (rsFC) after ECT. Table 4 demonstrates the findings of each study according to the method of analysis (whole-brain analysis or ROI analysis). Findings common to these studies were changes in the rsFC of the default mode network (DMN), PFC, thalamus, hippocampus, and insula.

The first study group, which included schizophrenia (n=9) and MDD (n=12) patients, performed a whole-brain analysis and observed increased rsFC of the medial prefrontal cortex (mPFC) within the DMN, between the executive network and the DMN, and between the executive network and salience network, along with decreased low-frequency oscillations in the striatal networks in patients with schizophrenia after ECT. ROI analyses of the amygdala to other brain regions showed decreased rsFC between the right amygdala and various regions, including the mPFC, insula, and DLIFC.

The second study group compared patients with schizophrenia treated with either ECT (n=21) or antipsychotics alone (n=21). Whole-brain analyses showed increased connectivity of the ventral medial prefrontal cortex (vmPFC) and dorsal medial prefrontal cortex (dmPFC) after ECT compared with the antipsychotics only group and controls. This group performed ROI analyses of the insular subfields, hippocampus, and thalamic subfields. While significant changes in various regions were found, responders to ECT exhibited increased rsFC of the hippocampus to the PFC and the hippocampus to the DMN, and between the thalamus and regions of the temporal lobe and cerebellum.

The fourth group observed altered rsFC within various networks, including the DMN and temporal lobe networks, in the ECT group compared with antipsychotics only group. The results from the aforementioned studies suggest rsFC of the DMN and associated regions (n=5), PFC (n=4), thalamus (n=2), hippocampus (n=2) and insula (n=2) were commonly altered after ECT.

Associations with clinical improvement and ECT response status

Findings of significant associations with clinical improvement and the status of the ECT response are listed in Supplementary Tables 2 and 3 (in the online-only Data Supplement), respectively. Four studies reported associations of clinical im-
Table 3. Regional volumes measured by structural magnetic resonance imaging in patients with schizophrenia receiving ECT

<table>
<thead>
<tr>
<th>Whole brain analysis</th>
<th>Baseline</th>
<th>After ECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparisons with controls</td>
<td>↓ GMV of rt. ACC<sup>44</sup></td>
<td>↓ GMV of rt. ACC<sup>44</sup></td>
</tr>
<tr>
<td></td>
<td>↑ GMV of precueus, ↓ GMV of bilateral thalamus,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>medial temporal lobe, left DLPFC/ACC,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bilateral cerebellum<sup>42</sup></td>
<td></td>
</tr>
<tr>
<td>Comparisons with schizophrenia patients who did not receive ECT and underwent antipsychotic treatment only</td>
<td>↓ Bilateral parahippocampal gyrus/hippocampi<sup>44</sup></td>
<td>↑ GMV of bilat. parahippocampal gyrus/hippocampus,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rt. temporal pole/STG, rt. insula<sup>44</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ Temporal pole/STG, rt. insula<sup>44</sup></td>
</tr>
<tr>
<td>Within group comparisons (baseline vs. after ECT) in schizophrenia patients with ECT</td>
<td>↑ GMV of medial temporal lobe & left DLPFC<sup>42</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region of interest analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparisons with controls</td>
<td>(-)</td>
<td>↑ GMV of rt. insula<sup>43</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ GMV of rt. amygdala/hippocampus (MDD)<sup>43</sup></td>
</tr>
<tr>
<td>Comparisons with schizophrenia patients who did not receive ECT and underwent antipsychotic treatment only</td>
<td>No significant difference of bilat. hippocampal volume<sup>45</sup></td>
<td>↑ GMV of bilateral dorsal anterior insula and posterior insula<sup>46</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ Bilat. hippocampal volume (after controlling for overall intracranial volume)<sup>45</sup></td>
</tr>
<tr>
<td>Within group comparisons (baseline vs. after ECT) in schizophrenia patients with ECT</td>
<td>↑ GMV of rt. amygdala, rt. hippocampus, rt. insula (in both schizophrenia and MDD)<sup>43</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ GMV of rt. insula<sup>43</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ GMV of bilateral posterior insula<sup>46</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ Lt. HATA volumes in responders at baseline compared with nonresponders (response defined by 50% or more decrease in PANSS score)<sup>45</sup></td>
</tr>
</tbody>
</table>

GMV: gray matter volume, rt.: right, ACC: anterior cingulate cortex, ECT: electroconvulsive therapy, DLPFC: dorsolateral prefrontal cortex, bilat.: bilateral, STG: superior temporal gyrus, lt.: left, IFG: inferior frontal gyrus, MTG: middle temporal gyrus, MDD: major depressive disorder, HATA: hippocampus amygdala transitiona area, PANSS: positive and negative symptom scale
Table 4. Functional connectivity measured by functional magnetic resonance imaging in patients with schizophrenia receiving ECT

<table>
<thead>
<tr>
<th>Whole brain analysis</th>
<th>Baseline</th>
<th>After ECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparisons with controls</td>
<td>No significant difference in rsFC49</td>
<td>No significant difference in rsFC49</td>
</tr>
<tr>
<td>Comparisons with schizophrenia patients who did not receive ECT and underwent antipsychotic treatment only</td>
<td>(-)</td>
<td>↑ gFCD in vmPFC in the ECT group49</td>
</tr>
<tr>
<td>Within group comparisons (baseline vs. after ECT) in schizophrenia patients with ECT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ gFCD in dmPFC, vmPFC, lt. precuneus49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ rsFC of 1) mPFC within the DMN, 2) executive network and DMN, 3) executive network and salience network49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ low frequency oscillations in the striatal network49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ rsFC between rt. amygdala and lt. hippocampus49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region of interest analysis</th>
<th>Baseline</th>
<th>After ECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparisons with controls</td>
<td>(-)</td>
<td>↑ rsFC between rt. amygdala & hypothalamus43</td>
</tr>
<tr>
<td>Comparisons with schizophrenia patients who did not receive ECT and underwent antipsychotic treatment only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No significant difference in ROIs46</td>
<td>↓ rsFC between lt. post. insula and lt. MOG46</td>
<td></td>
</tr>
<tr>
<td>No significant difference in ROIs50</td>
<td>↓ rsFC between rt. post. insula and lt. OFC46</td>
<td></td>
</tr>
<tr>
<td>Within group comparisons (baseline vs. after ECT) in schizophrenia patients with ECT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ rsFC between rt. amygdala and the rt. TPJ, mPFC, bilat. post. insula, rt. DLPFC43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ rsFC between rt. amygdala & hypothalamus43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ rsFC between lt. post. insula and lt. MOG46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ rsFC between rt. post. insula and lt. OFC46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ rsFC of thalamus to sensory cortex30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ rsFC between 1) hippocampus and PFC, 2) hippocampus and DMN in responders after ECT45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ rsFC between hippocampus and primary sensory network in nonresponders after ECT45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ rsFC between 1) PPha.R and rt. inf. temporal cortex, 2) PPha.R and rt. cerebellum in responders after ECT50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ rsFC between 1) PPha.R and rt. inf. temporal cortex, 2) PPha.R and rt. cerebellum, 3) PPha.R and rt. precuneus, 4) PPha.R and lt. cerebellum in nonresponders after ECT50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

provement with changes in the hippocampus, two studies with changes in the insula, and one study with changes in the amygdalar region, respectively.

DISCUSSION

This is the first systematic review to examine neural effects of ECT in patients with schizophrenia. A standardized literature search yielded 17 studies. The majority of recent studies (n=11) used MRI as the study modality, which examined morphometric (n=6) and functional (n=8) changes before and after ECT. An additional six studies investigated the effect of ECT on CBF (n=3) and brain metabolites (n=3). Overall, the reviewed publications considerably differed in both study designs and modalities, which precluded performing a meta-analysis.

Cerebral blood flow changes after ECT

Two studies compared changes in blood flow after ECT in patients with schizophrenia and patients with MDD and observed increased blood flow in patients with schizophrenia using SPECT and NIRS, respectively. Notably, studies of patients with MDD quite frequently report decreased blood flow in various regions following ECT sessions. Two other studies compared the data obtained from patients with schizophrenia before and after ECT, and one study did not report significant alterations (SPECT), while the other reported decreased blood flow after ECT (PET). Due to the small numbers and discrepancies in study modalities and findings, a solid conclusion concerning changes in blood flow after ECT is difficult to obtain.

Changes in brain metabolites after ECT

Other studies examined changes in brain metabolites using MRS; interestingly, two studies reported increased NAA/Cr ratios in the left PFC and the left thalamus. The NAA/Cr ratio is considered an indicator of neuronal integrity, which is known to decrease in conditions such as aging, brain tumors, and acute pathological processes, and these decreases are known to be reversible with treatment. Previous meta-analyses provided consistent evidence of decreased NAA/Cr ratios in the hippocampus, thalamus, frontal and temporal lobes of patients with schizophrenia, which, interestingly, were increased after antipsychotic treatment. Although these findings must be replicated in the future due to the small number of studies that utilized MRS, the increase in NAA/Cr ratios in the left PFC and the left thalamus, regions that are strongly implicated in the pathophysiological hypothesis of schizophrenia, may imply therapeutic neuronal ‘reorganization’ by ECT. These results from MRS, since they contain properties of both structure and function, might serve integrative functions in explaining the effects of ECT when results from MRI studies are combined along with the proposed pathophysiological models of schizophrenia. Future studies examining NAA, GABA, and glutamate or glutamine in the regions highly implicated in schizophrenia and ECT (such as the frontal and temporal lobes, the hippocampus, and thalamostriatal regions), may help to further our understanding of the mechanism of action of ECT.

Structural and functional changes after ECT

Only four study groups independently examined the neural effects of ECT on patients with schizophrenia. Although fewer studies of patients with schizophrenia have been reported than studies of patients with depression, the results quite consistently indicate increases in the volumes of the hippocampus (structural, n=4) and insula (structural, n=4). Additionally, a comparison of patients with schizophrenia and MDD revealed common increases in the GMVs of the hippocampus, while the increases in right insular GMV were restricted to patients with schizophrenia. FC studies presented more divergent results for different ROIs, while commonly identified alterations were located within the regions of the DMN (functional, n=5), PFC (n=4), thalamostriatal system (n=2), hippocampus (n=2), and insula (n=2). Moreover, among the features that were associated with symptom reductions were the hippocampus (n=4), insula (n=2), and amygdala (n=1).

From the integrated findings of both structural and functional measures, we infer, albeit preliminarily, that the hippocampus (total, n=6; symptom associations, n=4) and insula (total, n=6; symptom associations, n=2) are the common regions of modulation in patients with schizophrenia after ECT.

Insula

The insula is located deep within the lateral sulcus of the human brain. The upper cortices that cover the insula are called the operculum, which are composed of parts of the adjacent frontal, temporal, and parietal cortices. The insula is involved in various functions, such as interoception, multimodal sensory processing, self-related processes, taste, social emotions, homeostasis and auditory perception. This whole spectrum of functions can be served owing to the extensive viscerosensory inputs into the region and its anatomical position amidst three different cerebral lobes permitting dense reciprocal connections with the limbic, prefrontal, somatosensory, and temporal areas.

The results from the current systematic review revealed increased GMVs in the right insula in all of the structural MRI studies that performed whole-brain analysis. While conclusion should not be drawn solely based on this result, the un-
derlying implication of insular involvement in patients with schizophrenia suggests that the insula has some unique characteristics worth further discussion.

First, the insula is one of the most consistent regions showing structural alterations in patients with schizophrenia. An anecdotal meta-analysis that included studies performing whole-brain analyses showed that approximately 50% and 40% of studies (which ranks as 7th and 10th, respectively among all regions of interest) reported reduced volumes of left and right insular areas, respectively.85 Indeed, structural alterations of the insula are considered the most consistent findings in psycho-sis subjects.82 In a meta-analysis performed by Crow et al.,82 the insula was the most commonly reported area showing volumetric reduction, followed by the thalamus and anterior cingulate cortex. Additionally, in terms of numbers, right insula was the most commonly reported altered area, while in terms of the size of volumetric reductions, left insular defects were more profound in patients with schizophrenia.82

Second, recent studies have demonstrated insular involvement in auditory sensory processing. Intracranial electroencephalography recordings found auditory responses of the posterior insula resembling the response in Heschl’s gyrus,77 and a separate study implicated insular involvement in auditory deviance detection and the formation of mismatch negativity.79 Abnormal sensory gating and altered auditory evoked potentials are one of the key pathophysiological findings explaining the phenomena of hallucinations in schizophrenia patients.83 Since clinical observations have suggested that ECT is more effective in refractory positive symptoms than in negative domains,84 amelioration of clinical symptoms after ECT might be mediated in part by modulation of the insular cortex.

Third, although its implications in schizophrenia remain unclear, lateralized functions of the insula appear to be related to the control of the autonomic nervous system. Various studies ranging from intraoperative intracranial electrical stimulation to lesion studies have shown that the right insula is involved in the top-down control of sympathetic tone.75,84-86 While the findings have been somewhat inconsistent, various types of autonomic dysfunction, such as alterations in heart rate variability (HRV)87,88 and decreased vagal tone,89,90 have been reported in patients with schizophrenia. Autonomic responses and control during stressful situations constitute an important axis in the stress diathesis model of psychiatric illness,91-93 and insular modulation by ECT may exert some effects on the central control of sympathetic nervous system tone.

Finally, the self-related functions of insula share striking commonalities in terms of the main psychopathology of delusions and hallucinations in patients with schizophrenia. Among the wide range of insular dysfunctions demonstrated in patients with schizophrenia,94-100 some studies have reported a relationship between decreased right insular volumes and delusion severity96 or degree of insight.97 Delusion and hallucination are considered externalizing psychopathologies, which suggest impairment in the insular functions of interoception and self-attribution in patients with schizophrenia.

Hippocampus

The modulation of the hippocampus and its neurotrophic functions by ECT are very strongly supported by findings from animal models of electroconvulsive seizure (ECS) and patients with MDD. The increase in the hippocampal volume observed in patients with depression after ECT are not only a robust finding but also explains many aspects of depression, including its treatment and etiology. Concerning treatment, ECT is considered the most effective treatment modality in depression, including treatment-resistant cases.13,14 Approximately 50% to 60% of treatment-resistant depression patients will respond to ECT,13 and its efficacy is deemed to be five- to six-fold greater than antidepressant therapy. In addition, the chronic stress model of depression is closely associated with dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis,101 as both early life and chronic stress are known to increase levels of the stress hormone cortisol and alter the functions of the HPA axis.102 Stress and HPA axis dysfunction are known to exert deleterious effect on hippocampus, including cell loss and volume reductions.103,104

Meanwhile, most researchers appreciate that schizophrenia is a ‘dysconnection’ syndrome among large distributed brain networks,105,106 rather than problem of a single faulty region. Notwithstanding, hippocampal hyperactivity is among the most consistent functional abnormalities observed in patients with schizophrenia.107-109 Postmortem studies have replicated reduced hippocampal volumes,110-112 which are also consistent with the current body of neuroimaging studies in patients with schizophrenia.113-116 In addition, while the number of neurons in the hippocampus is not significantly altered, reduction in inhibitory interneuron population of the hippocampus was demonstrated.107,108,117 Studies measuring blood flow and metabolism also replicated abnormalities in the hippocampus, and subsequent studies have found that these metabolic shifts are associated with a greater reduction in hippocampal volume with disease progression.109 Additionally, neuroimaging and animal studies have consistently reported reductions in the volumes of hippocampal subfields, with CA1 subfield showing the most robust changes.118,119

The dopamine hypothesis of schizophrenia was born based on the clinical effectiveness of antipsychotic agent chlorpromazine.120-122 The modern mainstream pathophysiological hypothesis of schizophrenia focuses on abnormality of the glutamate system and impairment in interneuron functions.123-125
Hippocampal hyperactivity can be explained by both the dopamine and glutamate hypotheses. First, while optimal levels of dopamine can enhance memory and functions subserved by the hippocampus, higher levels of dopamine were demonstrated to exert deleterious effects. Neuronal connections between the ventral hippocampus and striatum are bionectional and capable of modulating dopamine levels in the other structure. This means that the dysfunctionsally increased dopamine levels in the striatum can induce high dopamine levels in hippocampal areas, and vice versa, which could lead to hippocampal hyperactivity. Second, the hippocampus is among one of the most implicated areas concerning the glutamate hypothesis, which includes NMDA receptor hypofunction and reduced inhibitory interneuron function. These abnormalities result not only in hyperactivity of the hippocampus but also in dysfunctional connectivity, which includes connections to the striatum and the frontal lobes.

Moreover, with regard to the neurotrophic hypothesis of ECT, there is considerable evidence that neurogenesis functions are altered in schizophrenia. Animal models of psychosis have demonstrated decreased adult neurogenesis. However, animal models of schizophrenia are mainly induced by administering substances known to induce psychotic illness. While the psychotic state itself is indeed important in understanding the pathology of schizophrenia, it may not be sufficient since schizophrenia follows a more chronic and deteriorating clinical course, including negative symptoms and cognitive impairment. Tracing adult neurogenesis in vivo in patients is methodologically difficult due to technical issues, and thus surrogate markers are frequently used to measure adult neurogenesis, such as Nestin, Ki-67 and Musashi-1, which are expressed in proliferating cells. Of such markers, downregulation of Ki-67 has been observed in the dentate gyrus of patients with schizophrenia compared to controls. In addition, induced pluripotent stem cell studies have modeled deficient functioning of dentate gyrus granule cells in schizophrenia, marked by alterations in gene expression of adult neurogenesis and decreased neurogenesis. Additionally, numerous genes implicated in schizophrenia, such as DISC1, Neuroregulin-1, Reelin, are associated with neurogenesis. Although the direct findings of dysfunctional adult neurogenesis in patients with schizophrenia await verification, these functions are presumed to be altered when the previous literature is considered.

Specificity of the findings and implications
While these results provide evidence of changes in the hippocampus and insula of patients with schizophrenia, several important issues must be considered. First, might these results arise from nonspecific changes induced by ECT, such as edema, inflammation, or reactive gliosis? While this is a possibility that needs to be addressed more thoroughly in future studies, existing evidence from both animal and human studies suggests that the effects of ECT cannot be fully attributed to these nonspecific effects. While ECS in animal models potentiates a wide range of alterations covering various regions of the brain, the results of ECS studies demonstrate rather specific changes in the hippocampal region with marked alterations in neuroplastic functions. Additionally, in human studies, neuroimaging within 15 hours after ECT did not detect marked change in fluid shifts in the hippocampal region. Moreover, studies of patients with MDD that controlled for overall cerebral volumes to address these issues have also reported a significant increase in the volume of the hippocampus apart from such nonspecific effects.

Second, are these changes common both to MDD and schizophrenia, or are they disease-specific? Previous attempts to explain the mechanisms underlying ECT have largely focused on the overall ECT effect, without differentiating between the two disorders. While conclusions based on the currently insufficient body of evidence may be preliminary, the hippocampus appears to be commonly modulated in both animals and human subjects (including both patients with MDD and schizophrenia), while comparisons of patients with MDD with patients with schizophrenia observed increased volumes in the right insula restricted to the schizophrenia group. However, this evidence is preliminary and needs replication, and current research is even more scarce in terms of what are the requisite conditions for ECT to be effective and the relationship between hippocampal modulation and symptom improvements.

An important difference in the application of ECT between patients with MDD and schizophrenia is that ECT results in a very high proportion of responses and remission among patients with MDD; however, approximately one-third of patients with schizophrenia do not adequately benefit from ECT treatment. Therefore, to clearly delineate schizophrenia-specific ECT treatment effects from the common effects of electrical stimulation, classifying patients into responders and non-responders and comparing between the two groups might prove useful in future studies.

Furthermore, as the discovery of the effect of chlorpromazine preceded the development of the dopamine hypothesis, efforts to identify the mechanism of ECT may also help to improve our understanding of treatment-resistance in patients with schizophrenia. While treatment-resistance constitutes a serious mental health problem, the neurobiological underpinnings of TRS are at best only poorly understood due to the lack of consistent findings hitherto. Because it can now be ap-
precipitated, based on large volumes of previous animal and MDD research, that the effects of ECT are specific to some regions, establishing the neurobiological substrates of ECT and combining them with stratification based on treatment response may provide some valuable insights to understanding the neural underpinnings of TRS.

Limitations
There are several limitations of this review. First and most importantly, a small number of studies with divergent modalities precluded a systematic meta-analysis. Second, individually selected ROIs among various studies also made it difficult to infer which region or networks were most consistently modulated after ECT in schizophrenia patients. Third, as discussed above, hippocampal and insular modulation might be a common end result of ECT and may not define schizophrenia-specific alterations.

CONCLUSIONS
This systematic review presents preliminary evidence of hippocampal and insular modulation after ECT in patients with schizophrenia. This holds true for morphometry, FC, and symptom association measures. Other potential candidates include the DMN, PFC, and thalamostriatal system, as demonstrated by MRS and fMRI studies, and the amygdala, along with the hippocampus and insula, which were associated with symptom reductions. However, due to the small number of studies, replication is indispensable to generalize and elaborate our understanding of the neurobiological underpinnings of the ECT effect in schizophrenia patients.

We believe that ECT provides a unique window to the understanding and management of treatment-resistance in patients with schizophrenia. However, the effect and mechanism of action of ECT are most likely to be complex and possibly mediated by various structural, functional, and metabolic alterations. Dysfunctional neurotrophic factors in schizophrenia could partially be remedied by ECT, but other factors, including neurotransmitter changes, synaptic remodeling, and restoration of altered FC in other largely distributed networks, may also play an important role. To disentangle the mystifying mechanisms of ECT, augmentation of functional approaches (functional MRI, MRS, electroencephalography) with morphometric results might prove useful in future study designs.

Supplementary Materials
The online-only Data Supplement is available with this article at https://doi.org/10.30773/pi.2020.0438.

Acknowledgments
This research was supported by the Brain Research Program and the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (Grant nos. 2017M3C7A1029610 and 2019R1C1C1002457).

Conflicts of Interest
The authors have no potential conflicts of interest to disclose.

Author Contributions

ORCID iDs
Sun-Young Moon https://orcid.org/0000-0001-7319-4131
Minah Kim https://orcid.org/0000-0001-8668-0817
Silvia Kyungjin Lho https://orcid.org/0000-0001-7164-9358
Sanghoon Oh https://orcid.org/0000-0002-7394-5211
Se Hyun Kim https://orcid.org/0000-0001-7078-2835
Jun Soo Kwon https://orcid.org/0000-0002-1060-1462

REFERENCES
15. Grover S, Sahoo S, Rabha A, Koirala R. ECT in schizophrenia: a re-
Systematic Review of Neural Effect of ECT

53. Abbott CC, Gallegos P, Rediske N, Lemke NT, Quinn DK. A review

73. Limman C, Coombs G, Gof D, Holt DJ. Lack of insula reac-
tivity to aversive stimuli in schizophrenia. Schizophr Res 2013;143:
150-157.
97. Palaniyappan L, Mallikarjun P, Joseph V, Liddle PF. Appreciating
symptoms and deficits in schizophrenia: right posterior insula and
poor insight. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:
523-527.
98. Palaniyappan L, Simmonite M, White TP, Liddle ER, Liddle PF. Neu-
ral primacy of the salience processing system in schizophrenia. Neu-
99. White TP, Joseph V, Francis ST, Liddle PF. Aberrant salience network
(bilateral insula and anterior cingulate cortex) connectivity during
information processing in schizophrenia. Schizophr Res 2010;123:
105-115.
100. Wyle KP, Triegallas JR. The role of the insula in schizophrenia. Schizophr
Res 2010;123:93-104.
101. Gotlib IH, Joormann J, Minor KL, Hallmayer J. HPA axis reactivity:
a mechanism underlying the associations among 5-HTTLPR, stress,
102. Heim C, Newport DJ, Mietzko T, Miller AH, Nemeroff CB. The link
between childhood trauma and depression: insights from HPA axis
103. Lee AL, Ogle WO, Sapolsky RM. Stress and depression: possible links
to neuron death in the hippocampus. Bipolar Disord 2002;4:117-128.
104. Lucassen P, Heine V, Muller M, van der Beek E, Wiegant V, Ron De
Kloet E, et al. Stress, depression and hippocampal apoptosis. CNS
Neurol Disord Drug Targets 2006;5:531-546.
105. Friston K, Brown HR, Siemerkus J, Stephan KE. The disconnection
107. Benes FM. Evidence for altered trisynaptic circuitry in schizophrenic
108. Benes F, Berretta S. GABAergic interneurons implications for under-
standing schizophrenia and bipolar disorder. Neuropsychopharma-
109. Heckers S, Konradi C. GABAergic mechanisms of hippocampal hy-
peractivity in schizophrenia. Schizophr Res 2015;167:4-11.
al. Post-mortem volume measurements of limbic system and basal
ganglia structures in chronic schizoaffective psychosis. Schizophr Res 1990;3:
295-301.
111. Dwork AJ. Postmortem studies of the hippocampal formation in
schizophrenia. Schizophr Bull 1997;23:385-402.
112. Heckers S, Heinsen H, Heinsen YC, Beckmann H. Limbic structures
and lateral ventricle in schizophrenia. A quantitative postmortem
113. van Erp TG, Hibar DP, Rasmussen JM, Ghahn DC, Pearson GD, An-
dreasen OA, et al. Subcortical brain volume abnormalities in 2028
individuals with schizophrenia and 2540 healthy controls via the
114. Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi
K, et al. Abnormal asymmetries in subcortical brain volume in schizo-
115. Koshiyama D, Fukunaga M, Okada N, Yamashita F, Yamamori H, Ya-
suda Y, et al. Subcortical association with memory performance in
schizophrenia: a structural magnetic resonance imaging study. Transl
Psychiatry 2018;8:20.
116. Koshiyama D, Fukunaga M, Okada N, Yamashita F, Yamamori H, Ya-
suda Y, et al. Role of subcortical structures on cognitive and social func-
tion in schizophrenia. Sci Rep 2018;8:1183.
117. Benes FM, Kowok EW, Vincent SL, Toddenkopf MS. A reduction of
non-pyramidal cells in sector CA2 of schizophrenics and manic depres-
118. Adriano F, Caltagione C, Spalletta G. Hippocampal volume reduc-
tion in first-episode and chronic schizophrenia. Neuroscientist 2012;
18:180-200.
L, et al. Hippocampal dysfunction in the pathophysiology of schizo-
phrenia: a selective review and hypothesis for early detection and in-
tervention. Mol Psychiatry 2018;23:1764-1772.
120. Carlson A. The current status of the dopamine hypothesis of schizo-
121. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: ver-
122. Meltzer HY, Stahl SM. The dopamine hypothesis of schizophrenia: a
123. Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypoth-
esis of schizophrenia: evidence from human brain tissue studies. Ann
124. Moghaddam B, Javitt D. From revolution to evolution: the glutamate
hypothesis of schizophrenia and its implication for treatment. Neuro-
125. Tamminga CA. Schizophrenia and glutamatergic transmission. Crit
126. Grace AA. Dopamine system dysregulation by the hippocampus: im-
plications for the pathophysiology and treatment of schizophrenia.
127. Lodge DJ, Grace AA. Hippocampal dysregulation of dopamine sys-
tem function and the pathophysiology of schizophrenia. Trends Pharmacol
128. Floresco SB, Todd CL, Grace AA. Glutamatergic afferents from the
hippocampus to the nucleus accumbens regulate activity of ventral
130. Lodge DJ, Grace AA. Aberrant hippocampal activity underlies the
dopamine dysregulation in an animal model of schizophrenia. J Neuro-
sci 2007;27:11424-11430.
131. Reif A, Schmitt A, Fritzen S, Lesch KP. Neurogenesis and schizophre-
nia: dividing neurons in a divided mind? Eur Arch Psychiatry Clin
132. Toro C, Deakin J. Adult neurogenesis and schizophrenia: a window on
133. Weissleder C, North HF, Shannon Weickert C. Important unanswered
questions about adult neurogenesis in schizophrenia. Curr Opin Psy-
Disrupted-in-schizophrenia I regulates integration of newly generat-
Reduced adult hippocampal neurogenesis and working memory def-
cits in the Dgcr8-deficient mouse model of 22q11.2 deletion associ-
ated schizophrenia can be rescued by IGF2. J Neurosci 2013;33:9408-
9419.
136. Wolf SA, Melnik A, Kempermann G. Physical exercise increases adult
neurogenesis and telomerase activity, and improves behavioral deficits
in a mouse model of schizophrenia. Brain Behav Immun 2011;25:
971-980.
137. Blumcke I, Schewe JC, Normann S, Brustle O, Schramm J, Elger CE,
et al. Increase of nestin-immunoreactive neural precursor cells in the
dentate gyrus of pediatric patients with early-onset temporal lobe epi-
Increased number of neural progenitors in human temporal lobe epi-
ral stem cell proliferation is decreased in schizophrenia, but not in de-
140. Yu DX, Di Giorgio FP, Yao J, Marchetto MC, Brennand K, Wright R,
et al. Modeling hippocampal neurogenesis using human pluripotent
cells.
SUPPLEMENTARY MATERIAL

Supplementary methods

PubMed, EMBASE, and the Cochrane Reviews were searched for publications with the following query: (“ECT” or “Electroconvulsive therapy” or “EST” or “Electroshock therapy” or “Electrotherapy”) AND (“Schizophrenia” or “Schizo-” or “Schizoaffective” or “Psychosis” or “Psychotic”) AND (“MRI” or “Magnetic resonance image” or “Magnetic resonance imaging” or “MRS” or “Magnetic resonance spectroscopy” or “Spectroscopy” or “PET” or “Positron emission tomography” or “BOLD” or “Blood oxygen level-dependent” or “Blood flow” or “SPECT” or “Single photon emission computed tomography” or “brain imag*” or “neuroim*” or “DTI” or “Diffusion tensor” or “NIRS” or “Near infrared spectroscopy”). Two researchers (S.M. and M.K.) independently carried out literature search procedures.

We intended to include articles that 1) included patients with schizophrenia, 2) studied the effects of electroconvulsive therapy (ECT), 3) utilized at least one neuroimaging modality, and 4) were written in English. The exclusion criteria were as follows: 1) studies that did not involve patients with schizophrenia, 2) studies that did not implement ECT, 3) studies that did not use any brain imaging methods, 4) publications that were case reports or case series, 5) publications that were review articles, 6) studies involving nonhuman subjects, 6) articles published in languages other than English, 7) articles for which only the abstract was available, 8) publications that were errata, 9) duplicate publications, and 10) studies published before 1990, which were retrieved during the systematic review process.

Supplementary results

Effects of ECT on CBF

Of the three studies included in this review, each study utilized different modalities and the study/control groups varied (two studies compared patients with schizophrenia and patients with depression, and one study compared patients with schizophrenia with controls).

A PET study compared the effect of bifrontal ECT on patients with schizophrenia (n=5) and controls (n=6). Following ECT, the CBF in the bilateral frontal lobes, right temporal lobe, and right putamen were decreased in the schizophrenia group.

A study using SPECT evaluated the effect of bifrontotemporal ECT on patients with catatonic schizophrenia (n=5) and catatonic depression (n=5). Prior to ECT, the SPECT results did not differentiate between patients with schizophrenia and MDD with catatonia. One week after ECT completion, right parietal and bilateral temporal CBF was increased in patients with schizophrenia compared with patients with MDD. However, within-group comparisons including only the patients with schizophrenia did not show alterations compared to the baseline values.

The third study used NIRS to measure dynamic changes in blood flow prior to, during, and after each session of bifrontotemporal ECT in patients with schizophrenia (n=11) and MDD (n=10). After ECT, the schizophrenia group showed an increased blood flow ratio of the left prefrontal cortex (PFC) to the right PFC, which was an asymmetry that was not observed in the MDD group. The authors noted a negative correlation of the asymmetry index of the left to right PFC with the duration of illness in the schizophrenia group.

Effects of ECT on brain metabolites

Three studies utilized MRS to measure changes in brain metabolites after ECT in patients with schizophrenia.

Gan et al. used randomization to assign patients with schizophrenia (n=68) into either ECT or antipsychotic treatment only groups and compared them with controls (n=34). At baseline, the NAA/Cr ratio was lower in the left PFC and the left thalamus of the schizophrenia group than in the control group. After ECT, the NAA/Cr ratio in the left PFC and the left thalamus significantly increased, a change that was not observed in the antipsychotic treatment group. The left PFC and left thalamic NAA/Cr ratios also displayed significant associations with the demographic and clinical characteristics of the study group undergoing ECT treatment. Changes in the NAA/Cr ratio in the left PFC positively correlated with the age at onset (r=0.44), percent reduction in the Positive and Negative Syndrome Scale (PANSS) score (r=0.41), baseline PANSS total score (r=0.37), and ECT stimulus intensity (r=0.35), and negatively correlated with the duration of illness (r=0.41). Changes in the NAA/Cr ratio in the left thalamus positively correlated with the age at onset (r=0.33) and negatively correlated with the duration of illness (r=0.35). The authors suggested that an older age at onset and a shorter duration of illness will result in a greater increase in the NAA/Cr ratio in the left PFC and left thalamus after treatment with ECT.
Another study compared changes in metabolites in the prefrontal and thalamic regions of patients with schizophrenia after ECT \((n=10)\) with patients undergoing antipsychotic treatment alone \((n=10)\). After treatment, patients who received ECT presented a significantly higher NAA/Cr ratio in the left prefrontal cortex than patients taking antipsychotic medications alone, and the choline/creatinine ratios in the left prefrontal and left thalamus were lower in the ECT group than in the antipsychotics alone group.

The third study measured medial prefrontal γ-aminobutyric acid (GABA) levels after ECT. Patients with schizophrenia either received ECT \((n=14)\) or antipsychotic treatment alone \((n=17)\), and controls \((n=19)\) were included. Medial prefrontal GABA levels did not significantly differ among the three groups, but when the group of patients with schizophrenia was analyzed as a whole, their GABA levels were lower than the control group. According to the post hoc analysis, GABA levels in the medial prefrontal cortex were increased in the ECT group, but not in the antipsychotics group.

Effects of ECT on brain structures

Six publications from three different groups were included in this review.

The first group examined the effect of ECT on patients with schizophrenia \((n=9)\), patients with MDD \((n=12)\), and matched controls \((n=21)\). Patient groups received right unilateral ECT. The whole-brain analysis yielded an increase in the GMV in the MTL network and the left DLPFC after ECT. The increases in the volume of the left DLPFC and changes in the total PANSS score showed a significant correlation \((-0.70)\).

The results using a different analysis approach, i.e., the selection of an ROI within the same dataset, found increased GMVs in the right amygdala, the anterior part of the right hippocampus, and the right insula in the group of patients with schizophrenia and MDD combined after ECT. These changes did not correlate with symptom severity, but the baseline GMV in the amygdala displayed an inverse correlation with the post-ECT increases in GMV in this region \((-0.75)\). Post hoc analyses revealed a significant within-group change in the right insula of patients with schizophrenia, while the results were not significant for patients with MDD. The post-ECT GMV values of the right amygdala/hippocampus region were greater in the MDD group and greater values were observed in the right insula in the schizophrenia group than the control values.

The second study group explored the effect of ECT on groups of patients with schizophrenia undergoing ECT \((n=21)\), patients with schizophrenia treated with antipsychotics alone \((n=21)\), and controls \((n=22)\). Using the whole-brain analysis method, the results showed significant differences between the three groups in the 1) left parahippocampal gyrus/hippocampus, 2) right parahippocampal gyrus/hippocampus, 3) right temporal pole and mid/superior temporal gyrus, and 4) right insula. The post hoc analysis further revealed increased volumes of all four aforementioned regions in the ECT group compared to baseline, and the antipsychotics group actually presented decreased volumes compared to the pretreatment evaluation. Of the four regions, the increase in the volume of the right parahippocampal gyrus/hippocampus was associated with a reduction in score for the positive subscale of the PANSS \((-0.57)\).

Complementary analyses by the same group used ROI analyses to explore the effect of ECT on regions of the insula and the hippocampus. Regarding the insula, the GMV in the posterior insula was increased in patients with schizophrenia after ECT sessions compared to baseline. These volumetric changes were also associated with changes in symptoms: increased GMV in the right posterior insula correlated with a reduced score for the PANSS positive scale \((ρ=0.667)\), reduced total PANSS score \((ρ=0.556)\), and reduced score for the PANSS general psychopathology scale \((ρ=0.634)\). With the selection of the hippocampus as the ROI, bilateral hippocampal volumes in the ECT group were increased after treatment compared to the antipsychotics only group (the overall intracranial volumes were adjusted).

Furthermore, the authors categorized the ECT group into treatment responders \((n=10)\) and nonresponders \((n=11)\) using a 50% or more reduction in the total PANSS score as the response criteria. While increased hippocampal volumes were observed in both responders and nonresponders, volumes in the left hippocampus–amygdala transition area were larger in responders at baseline than in nonresponders.

The third study group used multiparametric markers of MRI to predict the effects of ECT measured by percent reductions in PANSS scores. The authors integrated baseline GM features and white matter features (WM), which used T1-weighted and diffusion-weighted imaging modalities, respectively. The selection of GM and WM tract ROIs was performed by simulating the electrical fields used during ECT stimulation by modeling, and those regions with an electrical field strength greater than 35 V/m were included (23 GM ROIs and 37 WM tracts). Models were tested to predict differences in PANSS scores before and after ECT, and the model with the highest performance was shown to include both GM and WM baseline features. The important GM features were the left inferior frontal gyrus (IFG), right insula, left middle temporal gyrus (MTG), and right superior temporal gyrus (STG), and the important WM tracts were between the left calcarine-left superior temporal pole, right lingual-right inferior temporal gyrus (ITG), left middle occipital gyrus (MOG)-left ITG, right MTG-right ITG, and right IFG-right insula. The selected
model showed a performance with a root mean square error (RMSE) of 15.183 and a correlation efficient of 0.671 (RMSE=0 and r=1 represent the most accurate predictive model). Furthermore, this model was tested in a separate group of patients with schizophrenia undergoing ECT (n=15), which showed an RMSE value of 14.980 and a correlation coefficient of 0.777.

Effects of ECT on functional connectivity

Eight studies from four different study groups were included in this review.

Thomann et al.,7 whose study included both patients with schizophrenia and patients along with controls, found that right unilateral ECT appeared to alter the functional connectivity between the right amygdala and the ipsilateral cortical brain regions. The authors performed an ROI analysis with amygdala, hippocampus, and insula as seeds to assess the connectivity with the other brain regions. Reduced rsFC was observed between the right amygdala and the right temporo-parietal junction (TPJ), right medial prefrontal cortex (mPFC), bilateral posterior insula, and right DLPFC in both patient groups after ECT. In contrast, an increase in rsFC was observed between the right amygdala and hypothalamus, which follows the ventral amygdalofugal pathway, and these increases inversely correlated with the baseline connectivity strength in the same region (r=−0.85). These changes were not associated with any symptom improvements in either group. Post hoc analyses only yielded significant increases in rsFC between the right amygdala and hypothalamus in the schizophrenia group after the course of ECT, which also did not correlate with symptom changes.

The same study group published another study using the whole-brain method.11 In patients with schizophrenia, the rsFC of the 1) mPFC within the DMN, 2) executive network and the DMN, and 3) executive networks and the salience network was increased between the ECT, antipsychotics only, and control groups. Within-group post hoc analyses showed increased gFCD in the dmPFC, differences were observed among the ECT, antipsychotics only, and control groups between the right posterior parietal thalamus (PPthaR) and right inferior temporal cortex and between the PPthaR and right cerebellum, while FC in the same regions decreased in ECT nonresponders. The results of the studies that classified patients as responders and nonresponders are summarized in Supplementary Table 3 (in the online-only Data Supplement).

Effects of ECT on functional connectivity

Eight studies from four different study groups were included in this review.

Jiang et al.9 investigated the effect of ECT on changes in functional connectivity involving the insula. Significant group differences were observed among the ECT, antipsychotics only, and control groups between the left posterior insula and left MOG and between the right posterior insula and left orbitofrontal cortex (OFC). Post hoc analyses further revealed decreases in the functional connectivity strength between the left posterior insula and left MOG, as well as between the right posterior insula and left OFC, in the ECT group after ECT compared to the baseline, whereas the antipsychotics only group did not show significant changes. Interestingly, before the treatments, the ECT group presented slightly higher measures of functional connectivity (FC) in the aforementioned regions than the antipsychotics only group, but the ECT group exhibited substantially lower FC than the antipsychotics group after treatment. Additionally, FC between the left posterior insula and left MOG was significantly correlated with reduced scores on the PANSS general symptom scale (p=0.587) and PANSS negative symptom scale (p=0.560), and FC between the right posterior insula and left OFC was associated with reductions in the scores of the PANSS negative symptom scale (p=0.460).

Jiang et al.10 also explored FC between the hippocampus and other brain regions after ECT. Of the 21 patients who had undergone ECT treatment, 10 were classified as responders and 11 as nonresponders (a response was defined as a greater than 50% reduction in the total PANSS score). In responders, rsFC between the hippocampus and prefrontal cortex and between the hippocampus and DMN were increased after ECT compared to baseline. In nonresponders, post-ECT measures showed decreased rsFC between the hippocampus and primary sensory network compared to baseline.

In another complementary analysis performed by the same group, Wang et al.15 studied the effect of ECT on rsFC of the thalamic subfields. The authors compared the ECT plus antipsychotics group (n=21) with the antipsychotics only group (n=21). FC between the right thalamus and right putamen was increased in the ECT group compared to FC in the antipsychotics only group after treatment. Additionally, in the ECT group, FC of the thalamus to the sensory cortex was increased after treatment, while the antipsychotics group showed a decrease. When treatment responses were considered, responders to ECT showed increased FC between the right posterior parietal thalamus (PPthaR) and right inferior temporal cortex and between the PPthaR and right cerebellum, while FC in the same regions decreased in ECT nonresponders. The results of the studies that classified patients as responders and nonresponders are summarized in Supplementary Table 3 (in the online-only Data Supplement).
The third study group utilized rsFC to predict ECT responses in patients with schizophrenia (n=47).14 This same group used baseline GM and WM features to predict reductions in PANSS scores.12 The authors first simulated the hypothetical electric field distribution of the human head when an ECT stimulus was administered. Following this simulation, 23 ROIs presented high levels of electrical strength (i.e., greater than 35 V/m). Using these ROIs and the baseline FC of patients, they attempt to determine the best fitted model that would predict reductions in PANSS scores after ECT. A model with the most predictive values included 10 ROIs that would best predict the ECT response. Of these 10 ROIs, the actual data from study subjects showed a significant decrease in FC between the right amygdala and left hippocampus. The authors concluded that their model incorporating baseline FC would subsequently assist clinicians in determining individualized therapy and predict the ECT response at the individual level (Supplementary Table 2 in the online-only Data Supplement).

A separate research group built a classification model using rsFC to differentiate between patients with schizophrenia (ECT+ antipsychotics, n=13; antipsychotics only, n=16) and controls (n=34) and tested the ability of these classifier scores to predict reduced PANSS scores after treatment with either ECT or antipsychotics alone.13 The classifier score with six functional networks achieved a correct classification rate of 83.82% [specificity=91.18%, sensitivity=76.47%, area under the receiver operating characteristic curve (AUC)=0.90]. The six networks were the DMN, the MTL, the language network, the corticostral network, the frontal-parietal network, and the cerebellum. Changes in these classifier scores correlated with improvements in the PANSS scores for the total (r=0.71), negative (r=0.76), and general (r=0.66) scales. Additionally, baseline classifier scores had predictive value, with significant negative associations with the PANSS total (r=−0.75), positive (r=−0.70), negative (r=−0.78), and general subscores (r=−0.65). Low baseline classifier scores indicated a lower discriminatory power in differentiating between patients with schizophrenia and controls, and were shown to have predictive value for greater ECT responses. Notably, patients with schizophrenia undergoing antipsychotic treatment alone showed a similar pattern, with lower baseline classifier scores predicting larger treatment responses. Additionally, in the ECT group, FC in the posterior cingulate cortex (PCC), left STG, right angular gyrus, and right MTG increased, while FC in the right ACC, left MTG, and right precuneus decreased after ECT.

REFERENCES

Supplementary Table 1. Characteristics of the studies included in the review

<table>
<thead>
<tr>
<th>Author, year/methodology</th>
<th>Measurement</th>
<th>ECT protocol</th>
<th>Study findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urooj et al., 1999</td>
<td>5 SZ (mean age: 41.4, mean DOI: 22.6)</td>
<td>MRI</td>
<td>Bilateral ECT (four times per week, from 6 to 24 sessions per patient, with a mean of 16.4 sessions)</td>
</tr>
<tr>
<td>PET</td>
<td>6 HC</td>
<td>MRI</td>
<td>Bilateral ECT (three times per week, from 5 to 15 sessions per patient, with a mean of 11.3 sessions)</td>
</tr>
<tr>
<td>ECT was higher in both frontal lobes and the left cerebellum baseline compared to controls. ECT in both frontal lobes, the right temporal lobe and the right putamen was lower 5 to 17 days after ECT than baseline. Six months after ECT, however, there were no significant differences in ECT in each region compared to baseline in schizophrenia patients. The authors suggest higher control blood flow in SZ patients. Additionally, after ECT, 5-methoxy-4-hydroxyphenylglycol (MHPG) decreased, whereas high levels of prednisolone persisted after ECT in SZ patients.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Escobar et al., 2009	5 SZ with catatonia (mean age: 29.4)	SPECT	Bilaterotemporal ECT (three times per week, from 5 to 15 sessions per patient)
MDD with catatonia (mean age: 27)			Bilateral ECT (three times per week, from 7 to 12 sessions per patient)
Jbaugh et al., 2011	11 SZ (mean age: 45.8, DOI: 34.1)	rsfMRI	Bilaterotemporal ECT (mean of 6 sessions per patient)
NBS	10 depression (mean age: 64.5, DOI: 7.5)		Bilaterotemporal ECT (mean of 6 sessions per patient)

Gan et al., 2017	Randomized	MRS	SZ, MDD: NAA/Cr and Cho/Cr ratios before and after ECT
MRI	35 SZ (mean age: 27.5, DOI: 11.8, age at onset: 26.7)		Bilateral ECT (three times per week, from 5 to 15 sessions per patient)
34 SZ (antipsychotics, AP)	MRI	Bilateral prefrontal cortices and bilateral thalamus	
(mean age: 27.4, DOI: 10.1, age at onset: 26.9)		Bilateral ECT (three times per week, from 5 to 15 sessions per patient)	

Xia et al., 2018	14 SZ (mean age: 27.6, DOI: 5.72)	MRI	Bilaterotemporal ECT (three times per week, from 5 to 15 sessions per patient)
15 HC (mean age: 31.0, DOI: 7.75)		Number of sessions were determined by individual clinical response	
19 HC (mean age: 30.9)		Total number of sessions ranged from 8 to 12, with a mean of 11.3)	

| Li et al., 2017 | 32 SZ (ECT+AP) | fMRI | Right unaltered ECT (3 times per week, from 5 to 15 sessions per patient) |
| 13 AP (mean age: 31.0, DOI: 7.75) | | Number of sessions were individualized until symptom improvement from 8 to 12 sessions, with a mean of 11.5 sessions) |

| Hong et al., 2018 | 21 SZ (mean age: 29.2, DOI: 6.65) | fMRI | Right unaltered ECT (3 times per week, from 5 to 15 sessions per patient) |
| 21 AP (mean age: 30.7, DOI: 6.56) | | Number of sessions were individualized until symptom improvement from 8 to 12 sessions, with a mean of 11.5 sessions) |

| Jiang et al., 2019 | 21 SZ (mean age: 29.2, DOI: 6.65) | fMRI | Right unaltered ECT (3 times per week, from 5 to 15 sessions per patient) |
| 21 AP (mean age: 30.7, DOI: 6.56) | | Number of sessions were individualized until symptom improvement from 8 to 12 sessions, with a mean of 11.5 sessions) |

| Yang et al., 2020 | 8 SZ (mean age: 27.6) | fMRI | Mean number of ECT sessions were 12.6 for SZ and 11.5 for MDD |
| 20 HC | | Right unaltered ECT (3 times per week, from 5 to 15 sessions per patient) |

| Wang et al., 2019 | 21 SZ (mean age: 29.2, DOI: 6.65) | sMRI | Bilateral ECT (three times per week for total of 4 weeks) |
| 21 AP (mean age: 30.7, DOI: 6.56) | | Bilateral ECT (three times per week for total of 4 weeks) |

| Li et al., 2017 | 32 SZ (ECT+AP) | fMRI | Right unaltered ECT (3 times per week, from 5 to 15 sessions per patient) |
| 13 AP (mean age: 31.0, DOI: 7.75) | | Number of sessions were individualized until symptom improvement from 8 to 12 sessions, with a mean of 11.5 sessions) |

| Jiang et al., 2019 | 21 SZ (mean age: 29.2, DOI: 6.65) | fMRI | Right unaltered ECT (3 times per week, from 5 to 15 sessions per patient) |
| 21 AP (mean age: 30.7, DOI: 6.56) | | Number of sessions were individualized until symptom improvement from 8 to 12 sessions, with a mean of 11.5 sessions) |

| Wang et al., 2019 | 21 SZ (mean age: 29.2, DOI: 6.65) | sMRI | Bilateral ECT (three times per week for total of 4 weeks) |
| 21 AP (mean age: 30.7, DOI: 6.56) | | Bilateral ECT (three times per week for total of 4 weeks) |

| Jiang et al., 2019 | 21 SZ (mean age: 29.2, DOI: 6.65) | sMRI | Bilateral ECT (three times per week for total of 4 weeks) |
| 21 AP (mean age: 30.7, DOI: 6.56) | | Bilateral ECT (three times per week for total of 4 weeks) |

| Wang et al., 2020 | 21 SZ (mean age: 29.2, DOI: 6.65) | fMRI | Bilateral ECT (three times per week for total of 4 weeks) |
| 21 AP (mean age: 30.7, DOI: 6.56) | | Bilateral ECT (three times per week for total of 4 weeks) |

| Yang et al., 2020 | 8 SZ (mean age: 27.6) | fMRI | Mean number of ECT sessions were 12.6 for SZ and 11.5 for MDD |
| 20 HC | | Right unaltered ECT (3 times per week, from 5 to 15 sessions per patient) |

| Gong et al., 2019 | 37 SZ (mean age: 41.4, DOI: 22.6) | sMRI, DWI | Bilateral ECT (three times per week, from 5 to 15 sessions per patient) |
| 37 AP (mean age: 41.4, DOI: 22.6) | | Bilateral ECT (three times per week, from 5 to 15 sessions per patient) |

Both ECT and AP groups responded to treatment (PANS). At baseline, NAA/Cr was lower in the patient group compared to the control group: the reduced NAA/Cr was normalized after treatment with either ECT or AP. However, NAA/Cr increased after the treatment only in the ECT group and not in the AP group. Measures of Cho/Cr were not significantly different among the groups or after treatment. NAA/Cr changes in the left FPC positively correlated with age at onset (r=0.44), percentage of PANSs reduction (r=0.41), baseline pHMSD network, FC, posterior cingulate cortex, STG, superior temporal gyrus, MTL, middle temporal gyrus, ACC, anterior cingulate cortex, and right precuneus were decreased after ECT. Both medial prefrontal GABA levels did not significantly differ when comparing the three groups. However, when two patient groups (ECT and AP) were compared and correlated with their prefrontal GM and WM features, significant correlations were found only in the ECT group and not in the AP group. Clinical improvement did not differ between the two groups.

In both SZ and MDD groups, GMV in the MLT, comprising the amygdala, anterior part of the hippocampus and insula increased after ECT, but it did not correlate with symptom improvement. The GMV increase in the amygdala was inversely correlated with the duration of illness shorter, the greater the NAA/Cr would increase after treatment with ECT.

Medial prefrontal GABA levels did not significantly differ when comparing the three groups. However, when two patient groups (ECT and AP) were compared and correlated with their prefrontal GM and WM features, significant correlations were found only in the ECT group and not in the AP group. Clinical improvement did not differ between the two groups.

In both SZ and MDD groups, GMV in the MLT, comprising the amygdala, anterior part of the hippocampus and insula increased after ECT, but it did not correlate with symptom improvement. The GMV increase in the amygdala was inversely correlated with the duration of illness shorter, the greater the NAA/Cr would increase after treatment with ECT.
Supplementary Table 2. Features that showed associations with symptoms before and after ECT in patients with schizophrenia

<table>
<thead>
<tr>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAA/Cr changes in the left PFC (positive: age at onset, percentage of PANSS reduction, baseline PANSS total score, stimulus intensity of ECT; negative: duration of illness)⁴</td>
</tr>
<tr>
<td>NAA/Cr changes in the left thalamus (positive: age at onset; negative: duration of illness)⁹</td>
</tr>
<tr>
<td>GMV increase in the left DLPFC (positive: improvement in PANSS total score)⁹</td>
</tr>
<tr>
<td>Baseline GMV in the amygdala (negative: post-ECT GMV increase in amygdala)⁷</td>
</tr>
<tr>
<td>Volume increase in the right parahippocampal gyrus/hippocampus (positive: reduction in positive subscores on the PANSS)¹¹</td>
</tr>
<tr>
<td>GMV increase in the right posterior insula (positive: PANSS total, positive, and general subscore reductions)⁹</td>
</tr>
<tr>
<td>Increase in right amygdala-hypothalamus connectivity (negative: baseline connectivity strength of the same region)⁷</td>
</tr>
<tr>
<td>FC between the left posterior insula and the left MOG (positive: PANSS general and negative subscore reductions)⁹</td>
</tr>
<tr>
<td>FC between the right posterior insula and left OFC (positive: PANSS negative subscore reductions)⁹</td>
</tr>
<tr>
<td>Lower classifier scores constituted from six functional networks at baseline predicted greater ECT and antipsychotics response (the DMN, the MTL, the language network, the corticostriatal network, the frontal-parietal network, and the cerebellum) (positive: changes in PANSS total, negative, and general subscores)¹⁷</td>
</tr>
<tr>
<td>↑ lt. HATA volumes in responders compared with nonresponders¹⁰</td>
</tr>
<tr>
<td>Increase in volume in CA4 subfield of the hippocampus (positive: PANSS general subscore reductions)¹⁰</td>
</tr>
<tr>
<td>FC between the left caudal hippocampus and right angular gyrus (positive: PANSS general subscore reductions)¹⁰</td>
</tr>
<tr>
<td>No significant association of FC change in the thalamic subfields and PANSS score changes¹³</td>
</tr>
<tr>
<td>rsFC between the rt. amygdala and lt. hippocampus as predictive features for ECT response¹⁶</td>
</tr>
<tr>
<td>Decrease in FC between amygdala and hippocampus (positive: percentage reduction in PANSS total scores)¹⁶</td>
</tr>
<tr>
<td>Selected 10 features (GMV, WM) of the final predictive model which included the baseline measures of the right insula and the left IFG (associations with treatment response measured by changes in PANSS total scores)¹²</td>
</tr>
</tbody>
</table>

Supplementary Table 3. Structural and functional changes observed using MRI in patients with schizophrenia who were receiving ECT treatment after stratification according to the treatment response status

<table>
<thead>
<tr>
<th></th>
<th>Responders</th>
<th>Nonresponders</th>
</tr>
</thead>
</table>
| **Baseline** | Lower classifier scores comprised of six functional networks at baseline predicted greater ECT and antipsychotic responses (the DMN, the MTL, the language network, the corticostriatal network, the frontal-parietal network, and the cerebellum)\(^{17}\)
\[\uparrow \text{lt. HATA volumes in responders compared with nonresponders}\]\(^{10}\)
\[\text{rsFC between the rt. amygdala and lt. hippocampus was a predictor of the ECT response}\]\(^{16}\)
GMV features at baseline in the lt. IFG, rt. insula, lt. MTG, and rt. STG predicted the response to ECT\(^{12}\)
WM tract features at baseline in the lt. calcarine-lt. sup. temporal pole, rt. lingual-rt. ITG, lt. MOG- lt. ITG, rt. MTG-rt. ITG, and rt. IFG-rt. insula predicted the response to ECT\(^{12}\) | |
| **After ECT** | \[\uparrow \text{rsFC between 1) the hippocampus and PFC and between 2) the hippocampus and DMN in responders after ECT}\]\(^{10}\)
\[\uparrow \text{rsFC between 1) the PPtha.R and rt. inf. temporal cortex and 2) PPtha.R and rt. cerebellum in responders after ECT}\]\(^{15}\) | \[\downarrow \text{rsFC between the hippocampus and primary sensory network in nonresponders after ECT}\]\(^{10}\)
\[\downarrow \text{rsFC between 1) the PPtha.R and rt. inf. temporal cortex, 2) PPtha.R and rt. cerebellum, 3) PPtha.R and rt. precuneus, and 4) PPtha.R and lt. cerebellum in nonresponders after ECT}\]\(^{15}\) |