1. Mueser KT, McGurk SR. Schizophrenia. Lancet 2004;363:2063–2072.
2. Cheng W, Frei O, van der Meer D, Wang Y, O’Connell KS, Chu Y, et al. Genetic association between schizophrenia and cortical brain surface area and thickness. JAMA Psychiatry 2021;78:1020–1030.
3. Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT. Neurobiology of schizophrenia. Neuron 2006;52:139–153.
4. Mandal PK, Gaur S, Roy RG, Samkaria A, Ingole R, Goel A. Schizophrenia, bipolar and major depressive disorders: overview of clinical features, neurotransmitter alterations, pharmacological interventions, and impact of oxidative stress in the disease process. ACS Chem Neurosci 2022;13:2784–2802.
6. Ahmed AO, Strauss GP, Buchanan RW, Kirkpatrick B, Carpenter WT. Schizophrenia heterogeneity revisited: clinical, cognitive, and psychosocial correlates of statistically-derived negative symptoms subgroups. J Psychiatr Res 2018;97:8–15.
8. Fervaha G, Agid O, Foussias G, Siddiqui I, Takeuchi H, Remington G. Neurocognitive impairment in the deficit subtype of schizophrenia. Eur Arch Psychiatry Clin Neurosci 2016;266:397–407.
9. Hasan A, Falkai P, Wobrock T. [Early detection and treatment of schizophrenia]. MMW Fortschr Med 2010;152:53–55. German.
10. Bighelli I, Rodolico A, García-Mieres H, Pitschel-Walz G, Hansen WP, Schneider-Thoma J, et al. Psychosocial and psychological interventions for relapse prevention in schizophrenia: a systematic review and network meta-analysis. Lancet Psychiatry 2021;8:969–980.
11. Sabaie H, Gharesouran J, Asadi MR, Farhang S, Ahangar NK, Brand S, et al. Downregulation of miR-185 is a common pathogenic event in 22q11.2 deletion syndrome-related and idiopathic schizophrenia. Metab Brain Dis 2022;37:1175–1184.
12. Vigani G, Zocchi G, Bashir K, Philippar K, Briat JF. Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends Plant Sci 2013;18:305–311.
15. Richter-Dennerlein R, Dennerlein S, Rehling P. Integrating mitochondrial translation into the cellular context. Nat Rev Mol Cell Biol 2015;16:586–592.
18. Ben-Shachar D. Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr Res 2017;187:3–10.
19. Whitehurst T, Howes O. The role of mitochondria in the pathophysiology of schizophrenia: a critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev 2022;132:449–464.
20. Konradi C, Öngür D. Role of mitochondria and energy metabolism in schizophrenia and psychotic disorders. Schizophr Res 2017;187:1–2.
26. Roberts RC. Mitochondrial dysfunction in schizophrenia: with a focus on postmortem studies. Mitochondrion 2021;56:91–101.
27. Gonçalves VF, Andreazza AC, Kennedy JL. Mitochondrial dysfunction in schizophrenia: an evolutionary perspective. Hum Genet 2015;134:13–21.
28. Beeraka NM, Avila-Rodriguez MF, Aliev G. Recent reports on redox stress-induced mitochondrial DNA variations, neuroglial interactions, and NMDA receptor system in pathophysiology of schizophrenia. Mol Neurobiol 2022;59:2472–2496.
29. Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023;120:110626
30. Duarte JMN, Xin L. Magnetic resonance spectroscopy in schizophrenia: evidence for glutamatergic dysfunction and impaired energy metabolism. Neurochem Res 2019;44:102–116.
31. Wang D, Cheng SL, Fei Q, Gu H, Raftery D, Cao B, et al. Metabolic profiling identifies phospholipids as potential serum biomarkers for schizophrenia. Psychiatry Res 2019;272:18–29.
32. Hatano T, Ohnuma T, Sakai Y, Shibata N, Maeshima H, Hanzawa R, et al. Plasma alanine levels increase in patients with schizophrenia as their clinical symptoms improve-results from the Juntendo University Schizophrenia Projects (JUSP). Psychiatry Res 2010;177:27–31.
33. Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012;37:4–15.
34. Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK. Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry 2016;73:665–674.
35. Schiano C, Luongo L, Maione S, Napoli C. Mediator complex in neurological disease. Life Sci 2023;329:121986
36. Becerril S, Rodríguez A, Catalán V, Sáinz N, Ramírez B, Gómez-Ambrosi J, et al. Transcriptional analysis of brown adipose tissue in leptin-deficient mice lacking inducible nitric oxide synthase: evidence of the role of Med1 in energy balance. Physiol Genomics 2012;44:678–688.
37. Li K, Zhao B, Wei D, Wang W, Cui Y, Qian L, et al. miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1. Int J Mol Med 2020;45:543–555.
42. Wang Y, Lam KS, Lam JB, Lam MC, Leung PT, Zhou M, et al. Overexpression of angiopoietin-like protein 4 alters mitochondria activities and modulates methionine metabolic cycle in the liver tissues of db/db diabetic mice. Mol Endocrinol 2007;21:972–986.
45. Virmani A, Pinto L, Bauermann O, Zerelli S, Diedenhofen A, Binienda ZK, et al. The carnitine palmitoyl transferase (CPT) system and possible relevance for neuropsychiatric and neurological conditions. Mol Neurobiol 2015;52:826–836.