1. Oboudiyat C, Glazer H, Seifan A, Greer C, Isaacson RS. Alzheimer’s disease. Semin Neurol 2013;33:313–329.
2. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018;25:59–70.
4. Robillard A. Clinical diagnosis of dementia. Alzheimers Dement 2007;3:292–298.
6. Marquez F, Yassa MA. Neuroimaging biomarkers for Alzheimer’s disease. Mol Neurodegener 2019;14:21
7. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dementia 2018;14:535–562.
8. de Flores R, La Joie R, Chételat G. Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience 2015;309:29–50.
9. Eskildsen SF, Coupé P, Fonov VS, Pruessner JC, Collins DL; Alzheimer’s Disease Neuroimaging Initiative. Structural imaging biomarkers of Alzheimer’s disease: predicting disease progression. Neurobiol Aging 2015;36(Suppl 1):S23–S31.
12. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement 2012;8:S1–S68.
14. Bratić B, Kurbalija V, Ivanović M, Oder I, Bosnić Z. Machine learning for predicting cognitive diseases: methods, data sources and risk factors. J Med Syst 2018;42:243
15. Bryan RN. Machine Learning Applied to Alzheimer Disease. Chicago: Radiological Society of North America; 2016.
16. Kim J, Lee B. Automated discrimination of dementia spectrum disorders using extreme learning machine and structural t1 mri features. Annu Int Conf IEEE Eng Med Biol Soc 2017;2017:1990–1993.
17. Mirzaei G, Adeli A, Adeli H. Imaging and machine learning techniques for diagnosis of Alzheimer’s disease. Rev Neurosci 2016;27:857–870.
19. Salvatore C, Battista P, Castiglioni I. Frontiers for the early diagnosis of AD by means of MRI brain imaging and support vector machines. Curr Alzheimer Res 2016;13:509–533.
20. Sorensen L, Nielsen M, Alzheimer’s Disease Neuroimaging Initiative. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination. J Neurosci Methods 2018;302:66–74.
22. Dimitriadis SI, Liparas D, Tsolaki MN, Alzheimer’s Disease Neuroimaging Initiative. Random forest feature selection, fusion and ensemble strategy: combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer’s disease patients: from the alzheimer’s disease neuroimaging initiative (ADNI) database. J Neurosci Methods 2018;302:14–23.
28. Liaw A, Wiener M. Classification and regression by randomForest. R News 2002;2:18–22.
29. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for machine learning software: experiences from the scikit-learn project. arXiv preprint arXiv:1309.0238.
32. Mak E, Su L, Williams GB, Watson R, Firbank MJ, Blamire AM, et al. Progressive cortical thinning and subcortical atrophy in dementia with Lewy bodies and Alzheimer’s disease. Neurobiol Aging 2015;36:1743–1750.
35. Palumbo L, Bosco P, Fantacci M, Ferrari E, Oliva P, Spera G, et al. Evaluation of the intra-and inter-method agreement of brain MRI segmentation software packages: a comparison between SPM12 and Free-Surfer v6. 0. Physica Medica 2019;64:261–272.
36. Ahmed MR, Zhang Y, Feng Z, Lo B, Inan OT, Liao H. Neuroimaging and machine learning for dementia diagnosis: recent advancements and future prospects. IEEE Rev Biomed Eng 2018;12:19–33.
40. Cure S, Abrams K, Belger M, Happich M. Systematic literature review and meta-analysis of diagnostic test accuracy in Alzheimer’s disease and other dementia using autopsy as standard of truth. J Alzheimers Dis 2014;42:169–182.
42. Chandra A, Dervenoulas G, Politis M; Alzheimer’s Disease Neuroimaging Initiative. Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J Neurol 2019;266:1293–1302.