5. Taquet M, Luciano S, Geddes JR, Harrison PJ. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 2021;8:130-140.
6. Harris E. WHO declares end of COVID-19 global health emergency. JAMA 2023;329:1817
7. Huremović D. Brief history of pandemics (pandemics throughout history). In: Huremović D, editor. Psychiatry of pandemics: a mental health response to infection outbreak. Cham: Springer, 2019, p.7-35.
9. Reddemann L, Piedfort-Marin O. Stabilization in the treatment of complex post-traumatic stress disorders: concepts and principles. Eur J Trauma Dissoc 2017;1:11-17.
10. Hobfoll SE, Watson P, Bell CC, Bryant RA, Brymer MJ, Friedman MJ, et al. Five essential elements of immediate and mid-term mass trauma intervention: empirical evidence. Psychiatry 2021;84:311-346.
11. Cloitre M, Stovall-McClough KC, Nooner K, Zorbas P, Cherry S, Jackson CL, et al. Treatment for PTSD related to childhood abuse: a randomized controlled trial. Am J Psychiatry 2010;167:915-924.
13. Deng W, Hu D, Xu S, Liu X, Zhao J, Chen Q, et al. The efficacy of virtual reality exposure therapy for PTSD symptoms: a systematic review and meta-analysis. J Affect Disord 2019;257:698-709.
17. Vieira S, Liang X, Guiomar R, Mechelli A. Can we predict who will benefit from cognitive-behavioural therapy? A systematic review and meta-analysis of machine learning studies. Clin Psychol Rev 2022;97:102193
20. Azzolina D, Baldi I, Barbati G, Berchialla P, Bottigliengo D, Bucci A, et al. Machine learning in clinical and epidemiological research: isn’t it time for biostatisticians to work on it? Epidemiol Biostat Public Health 2019;16:e13245.
21. Fabris A, Bruschi M, Santucci L, Candiano G, Granata S, Dalla Gassa A, et al. Proteomic-based research strategy identified laminin subunit alpha 2 as a potential urinary-specific biomarker for the medullary sponge kidney disease. Kidney Int 2017;91:459-468.
22. Held P, Schubert RA, Pridgen S, Kovacevic M, Montes M, Christ NM, et al. Who will respond to intensive PTSD treatment? A machine learning approach to predicting response prior to starting treatment. J Psychiatr Res 2022;151:78-85.
23. Lee Y, Ragguett RM, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord 2018;241:519-532.
26. Pearson R, Pisner D, Meyer B, Shumake J, Beevers CG. A machine learning ensemble to predict treatment outcomes following an internet intervention for depression. Psychol Med 2019;49:2330-2341.
27. Leehr EJ, Roesmann K, Böhnlein J, Dannlowski U, Gathmann B, Herrmann MJ, et al. Clinical predictors of treatment response towards exposure therapy in virtuo in spider phobia: a machine learning and external cross-validation approach. J Anxiety Disord 2021;83:102448
28. Maples-Keller JL, Price M, Rauch S, Gerardi M, Rothbaum BO. Investigating relationships between PTSD symptom clusters within virtual reality exposure therapy for OEF/OIF veterans. Behav Ther 2017;48:147-155.
29. Schnurr PP, Lunney CA, Bovin MJ, Marx BP. Posttraumatic stress disorder and quality of life: extension of findings to veterans of the wars in Iraq and Afghanistan. Clin Psychol Rev 2009;29:727-735.
30. Tedeschi RG, Calhoun LG. Target article: “posttraumatic growth: conceptual foundations and empirical evidence”. Psychol Inq 2004;15:1-18.
33. Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 1993;3:203-220.
35. Lee DH, Gu M, Kwon W, Kim S. [A study on reliability and validity of the Korean version of PCL-5 (posttraumatic stress disorder checklist for DSM-5) for adults]. Korean J Couns Psychother 2020;32:559-582. Korean.
37. Weathers FW, Bovin MJ, Lee DJ, Sloan DM, Schnurr PP, Kaloupek DG, et al. The clinician-administered PTSD scale for DSM-5 (CAPS-5): development and initial psychometric evaluation in military veterans. Psychol Assess 2018;30:383-395.
38. Beck AT, Steer RA, Brown GK. Manual for the Beck depression inventory- II. San Antonio: Psychological Corporation; 1996.
39. Lim SU, Lee EH, Hwang ST, Hong SH, Kim JH. The Beck depression inventory-second edition: psychometric properties in Korean adult populations. Kor J Clin Psychol 2019;38:300-307.
41. Yi JS, Bae SO, Ahn YM, Park DB, Noh KS, Shin HK, et al. [Validity and reliability of the Korean version of the Hamilton depression rating scale (K-HDRS)]. J Korean Neuropsychiatr Assoc 2005;44:456-465. Korean.
42. Hahn DW, Lee CH, Chon KK. [Korean adaptation of Spielberger’s STAI (K-STAI)]. Korean J Health Psychol 1996;1:1-14. Korean.
43. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA. Manual for the state-trait anxiety inventory. Palo Alto: Consulting Psychologists Press; 1983.
46. Kim SH, Lim S, Shin J, Lee DH, Lee DH. [Validation of the Korean version of the posttraumatic growth inventory-expanded]. Korean J Cult Soc Issues 2020;26:195-220. Korean.
48. The WHOQOL Group. Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychol Med 1998;28:551-558.
49. Min SK, Lee CI, Kim KI, Suh SY, Kim DK. [Development of Korean version of WHO quality of life scale abbreviated version (WHOQOL-BREF)]. J Korean Neuropsychiatr Assoc 2000;39:571-579. Korean.
55. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016;785-794.
57. Akiba T, Sano S, Yanase T, Ohta T Koyama M. Optuna: A next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining 2019;2623-2631.
58. Hua J, Xiong Z, Lowey J, Suh E, Dougherty ER. Optimal number of features as a function of sample size for various classification rules. Bioinformatics 2005;21:1509-1515.
59. Jain AK, Waller WG. On the optimal number of features in the classification of multivariate Gaussian data. Pattern Recognit 1978;10:365-374.
60. Hertzum M. Reference values and subscale patterns for the task load index (TLX): a meta-analytic review. Ergonomics 2021;64:869-878.
62. Steinert C, Bumke PJ, Hollekamp RL, Larisch A, Leichsenring F, Mattheß H, et al. Resource activation for treating post-traumatic stress disorder, co-morbid symptoms and impaired functioning: a randomized controlled trial in Cambodia. Psychol Med 2017;47:553-564.
63. Constantino MJ, Boswell JF, Coyne AE. Patient, therapist, and relational factors. In: Barkham M, Lutz W, Castonguay LG, editors. Bergin and Garfield’s handbook of psychotherapy and behavior change: 50th anniversary edition. Hoboken: John Wiley & Sons, 2021, p.225-262.
65. Rosenkranz SE, Muller RT. Outcome following inpatient trauma treatment: differential response based on pre-treatment symptom severity. Psychol Trauma Theory Res Pract Policy 2011;3:453-461.
66. Uckelstam CJ, Philips B, Holmqvist R, Falkenström F. Prediction of treatment outcome in psychotherapy by patient initial symptom distress profiles. J Couns Psychol 2019;66:736-746.
68. Coyne AE, Mattson E, Bagley JM, Klein AB, Shekhtman K, Payat S, et al. Within-patient association between emotion regulation and outcome in prolonged exposure for posttraumatic stress disorder. J Consult Clin Psychol 2024;92:582-593.
69. Shigemoto Y. Reciprocal influence between posttraumatic stress and posttraumatic growth approximately one year after Hurricane Harvey: a bivariate latent change score modeling approach. Traumatology 2020;26:317-324.
70. Morrill EF, Brewer NT, O’Neill SC, Lillie SE, Dees EC, Carey LA, et al. The interaction of post-traumatic growth and post-traumatic stress symptoms in predicting depressive symptoms and quality of life. Psychooncology 2008;17:948-953.
71. Peters J, Bellet BW, Jones PJ, Wu GWY, Wang L, McNally RJ. Posttraumatic stress or posttraumatic growth? Using network analysis to explore the relationships between coping styles and trauma outcomes. J Anxiety Disord 2021;78:102359
72. Zoellner T, Maercker A. Posttraumatic growth in clinical psychology - a critical review and introduction of a two component model. Clin Psychol Rev 2006;26:626-653.
75. Caldwell YT, Steffen PR. Adding HRV biofeedback to psychotherapy increases heart rate variability and improves the treatment of major depressive disorder. Int J Psychophysiol 2018;131:96-101.
79. Whitmoyer P, Fisher ME, Duraney EJ, Manzler C, Isaacowitz DM, Andridge R, et al. Age differences in emotion regulation strategy use and flexibility in daily life. Aging Ment Health 2024;28:330-343.
80. Wang X, Blain SD, Meng J, Liu Y, Qiu J. Variability in emotion regulation strategy use is negatively associated with depressive symptoms. Cogn Emot 2021;35:324-340.
81. Hauschildt M, Peters MJ, Moritz S, Jelinek L. Heart rate variability in response to affective scenes in posttraumatic stress disorder. Biol Psychol 2011;88:215-222.
83. Rizzo A, Reger G, Gahm G, Difede J, Rothbaum BO. Virtual reality exposure therapy for combat-related PTSD. In: LeDoux J, editor. Post-traumatic stress disorder: basic science and clinical practice. Totowa: Humana Press, 2009, p. 375-399.