3. Korea Foundation for Suicide Prevention. White paper on suicide prevention. Ministry of Health and Welfare & Korea Foundation for Suicide Prevention. Seoul: Korea Foundation for Suicide Prevention; 2021.
5. Neeleman J, de Graaf R, Vollebergh W. The suicidal process; prospective comparison between early and later stages. J Affect Disord 2004;82:43-52.
8. Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity: a literature review. Arch Intern Med 2003;163:2433-2445.
9. Xiong F, Wang L, Shen L, Guo W, Li S, Guan Q. The relationship between multimorbidity and suicidal ideation: a meta-analysis. J Psychosom Res 2020;138:110257
10. Read JR, Sharpe L, Modini M, Dear BF. Multimorbidity and depression: a systematic review and meta-analysis. J Affect Disord 2017;221:36-46.
11. Han KM, Kim MS, Kim A, Paik JW, Lee J, Ham BJ. Chronic medical conditions and metabolic syndrome as risk factors for incidence of major depressive disorder: a longitudinal study based on 4.7 million adults in South Korea. J Affect Disord 2019;257:486-494.
12. Scott KM, Hwang I, Chiu WT, Kessler RC, Sampson NA, Angermeyer M, et al. Chronic physical conditions and their association with first onset of suicidal behavior in the world mental health surveys. Psychosom Med 2010;72:712-719.
13. Goodwin RD. Is COPD associated with suicide behavior? J Psychiatr Res 2011;45:1269-1271.
15. Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol 2018;14:91-118.
16. Helgeson VS, Zajdel M. Adjusting to chronic health conditions. Annu Rev Psychol 2017;68:545-571.
18. Heckler WF, de Carvalho JV, Barbosa JLV. Machine learning for suicidal ideation identification: a systematic literature review. Comput Human Behav 2022;128:107095
21. Knapič S, Malhi A, Saluja R, Främling K. Explainable artificial intelligence for human decision support system in the medical domain. Mach Learn Knowl Extr 2021;3:740-770.
22. Nordin N, Zainol Z, Mohd Noor MH, Chan LF. An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach. Asian J Psychiatr 2023;79:103316
24. Santos MS, Soares JP, Abreu PH, Araujo H, Santos J. Cross-validation for imbalanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier]. IEEE Comput Intell Mag 2018;13:59-76.
25. Amin A, Anwar S, Adnan A, Nawaz M, Howard N, Qadir J, et al. Comparing oversampling techniques to handle the class imbalance problem: a customer churn prediction case study. IEEE Access 2016;4:7940-7957.
26. Anis M, Ali M. Investigating the performance of smote for class imbalanced learning: a case study of credit scoring datasets. Eur Sci J 2017;13:340-353.
27. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 2002;16:321-357.
28. Batista GEAPA, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor 2004;6:20-29.
29. de Hond AA, Steyerberg EW, van Calster B. Interpreting area under the receiver operating characteristic curve. Lancet Digit Health 2022;4:e853-e855.
30. Tharwat A. Classification assessment methods. Applied Computing and Informatics 2020;17:168-192.
31. Brownlee J. Data preparation for machine learning: data cleaning, feature selection, and data transforms in Python. Machine Learning Mastery; 2020.
32. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. arXiv:1705.07874 [Preprint] May 22, 2017. Available at:
https://doi.org/10.48550/arXiv.1705.07874. Accessed December 18, 2023.
33. Lundberg SM, Erion GG, Lee SI. Consistent individualized feature attribution for tree ensembles. arXiv:1802.03888 [Preprint] February 12, 2018. Available at:
https://doi.org/10.48550/arXiv.1802.03888. Accessed September 24, 2023.
34. Mohammadian MK, Omidi T, Faradmal J, Poorolajal J. A comparison of random forest and decision tree for suicide ideation classification. Research Square [Preprint] September 15, 2020. Available at:
https://doi.org/10.21203/rs.3.rs-66839/v1. Accessed January 29, 2024.
40. Kim HK, Kim JY, Kim JH, Hyoung HK. Decision tree identified risk groups with high suicidal ideation in South Korea: a population-based study. Public Health Nurs 2016;33:99-106.
42. Hammen CL. Stress and depression: old questions, new approaches. Current Opin Psychol 2015;4:80-85.
45. Lee K. Relative handgrip strength in relation to depressive mood and suicidal ideation in Koreans using the 2015 KNHANES data. J Musculoskelet Neuronal Interact 2018;18:333-338.
46. Eisner MD, Katz PP, Lactao G, Iribarren C. Impact of depressive symptoms on adult asthma outcomes. Ann Allergy Asthma Immunol 2005;94:566-574.