1. Richetto J, Meyer U. Epigenetic modifications in schizophrenia and related disorders: molecular scars of environmental exposures and source of phenotypic variability. Biol Psychiatry 2021;89:215-226.
3. Dervaux A, Laqueille X. [Smoking and schizophrenia: epidemiological and clinical features]. Encephale 2008;34:299-305.
4. Šagud M, Vuksan-Ćusa B, Jakšić N, Mihaljević-Peleš A, Rojnić Kuzman M, Pivac N. Smoking in Schizophrenia: an Updated Review. Psychiatr Danub 2018;30:216-223.
6. Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res 2018;191:25-34.
9. D’Souza MS, Markou A. Schizophrenia and tobacco smoking comorbidity: nAChR agonists in the treatment of schizophrenia-associated cognitive deficits. Neuropharmacology 2012;62:1564-1573.
12. Morel C, Fernandez SP, Pantouli F, Meye FJ, Marti F, Tolu S, et al. Nicotinic receptors mediate stress-nicotine detrimental interplay via dopamine cells’ activity. Mol Psychiatry 2018;23:1597-1605.
13. Faure P, Tolu S, Valverde S, Naudé J. Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience 2014;282:86-100.
15. Bertelsen B, Oranje B, Melchior L, Fagerlund B, Werge TM, Mikkelsen JD, et al. Association study of CHRNA7 promoter variants with sensory and sensorimotor gating in schizophrenia patients and healthy controls: a danish case-control study. Neuromolecular Med 2015;17:423-430.
16. Kunii Y, Zhang W, Xu Q, Hyde TM, McFadden W, Shin JH, et al. CHRNA7 and CHRFAM7A mRNAs: co-localized and their expression levels altered in the postmortem dorsolateral prefrontal cortex in major psychiatric disorders. Am J Psychiatry 2015;172:1122-1130.
17. Kalmady SV, Agrawal R, Venugopal D, Shivakumar V, Amaresha AC, Agarwal SM, et al. CHRFAM7A gene expression in schizophrenia: clinical correlates and the effect of antipsychotic treatment. J Neural Transm (Vienna) 2018;125:741-748.
18. Freedman R. α7-nicotinic acetylcholine receptor agonists for cognitive enhancement in schizophrenia. Annu Rev Med 2014;65:245-261.
19. Shi J, Wang Z, Tan Y, Fan H, An H, Zuo L, et al. CHRNA4 was associated with prepulse inhibition of schizophrenia in Chinese: a pilot study. Cogn Neuropsychiatry 2016;21:156-167.
20. Hyde M, Choueiry J, Smith D, de la Salle S, Nelson R, Impey D, et al. Cholinergic modulation of auditory P3 event-related potentials as indexed by CHRNA4 and CHRNA7 genotype variation in healthy volunteers. Neurosci Lett 2016;623:36-41.
22. Petrovsky N, Ettinger U, Kessler H, Mössner R, Wolfsgruber S, Dahmen N, et al. The effect of nicotine on sensorimotor gating is modulated by a CHRNA3 polymorphism. Psychopharmacology 2013;229:31-40.
25. Oh S, Lee J, Kwon MS, Weir B, Ha K, Park T. A novel method to identify high order gene-gene interactions in genome-wide association studies: gene-based MDR. BMC Bioinformatics 2012;13(Suppl 9):S5
27. Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutationintolerant genes and in regions under strong background selection. Nature Genet 2018;50:381-389.
28. Wang HZ, Bi R, Zhang DF, Li GD, Ma XH, Fang Y, et al. Neprilysin confers genetic susceptibility to Alzheimer’s disease in Han Chinese. Mol Neurobiol 2016;53:4883-4892.
34. Su Y, Yang L, Li Z, Wang W, Xing M, Fang Y, et al. The interaction of ASAH1 and NGF gene involving in neurotrophin signaling pathway contributes to schizophrenia susceptibility and psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 2021;104:110015
35. Hu G, Yang C, Zhao L, Fan Y, Lv Q, Zhao J, et al. The interaction of NOS1AP, DISC1, DAOA, and GSK3B confers susceptibility of early-onset schizophrenia in Chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry 2018;81:187-193.