Use of a Machine Learning Algorithm to Predict Individuals with Suicide Ideation in the General Population
Seunghyong Ryu, Hyeongrae Lee, Dong-Kyun Lee, Kyeongwoo Park
Psychiatry Investig. 2018;15(11):1030-1036.   Published online 2018 Oct 11     DOI: https://doi.org/10.30773/pi.2018.08.27
Prediction of suicidal ideation with associated risk factors among university students in the southern part of Bangladesh: Machine learning approach
Sabiha Shirin Sara, Md. Asikur Rahman, Riaz Rahman, Ashis Talukder
Journal of Affective Disorders.2024; 349: 502.     CrossRef
An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach
Noratikah Nordin, Zurinahni Zainol, Mohd Halim Mohd Noor, Lai Fong Chan
Asian Journal of Psychiatry.2023; 79: 103316.     CrossRef
Application of artificial intelligence tools in diagnosis and treatmentof mental disorders
Klaudia Kister, Jakub Laskowski, Agata Makarewicz, Jakub Tarkowski
Current Problems of Psychiatry.2023; 24: 1.     CrossRef
An Apriori Algorithm-Based Association Rule Analysis to detect Human Suicidal Behaviour
Md. Mehedi Hassan, Asif Karim, Swarnali Mollick, Sami Azam, Eva Ignatious, A S M Farhan Al Haque
Procedia Computer Science.2023; 219: 1279.     CrossRef
Thoth: An intelligent model for assisting individuals with suicidal ideation
Wesllei Felipe Heckler, Luan Paris Feijó, Juliano Varella de Carvalho, Jorge Luis Victória Barbosa
Expert Systems with Applications.2023; 233: 120918.     CrossRef
Machine learning approaches for predicting suicidal behaviors among university students in Bangladesh during the COVID-19 pandemic: A cross-sectional study
Sultan Mahmud, Md Mohsin, Abdul Muyeed, Shaila Nazneen, Md. Abu Sayed, Nabil Murshed, Tajrin Tahrin Tonmon, Ariful Islam
Medicine.2023; 102(28): e34285.     CrossRef
Prediction of suicidal ideation in children and adolescents using machine learning and deep learning algorithm: A case study in South Korea where suicide is the leading cause of death
Soomin Shin, Kyungwon Kim
Asian Journal of Psychiatry.2023; 88: 103725.     CrossRef
Machine learning-based prediction for self-harm and suicide attempts in adolescents
Raymond Su, James Rufus John, Ping-I Lin
Psychiatry Research.2023; 328: 115446.     CrossRef
Prediction models of suicide and non‐fatal suicide attempt after discharge from a psychiatric inpatient stay: A machine learning approach on nationwide Danish registers
Sara Dorthea Nielsen, Rune H. B. Christensen, Trine Madsen, Karen‐Inge Karstoft, Line Clemmensen, Michael E. Benros
Acta Psychiatrica Scandinavica.2023; 148(6): 525.     CrossRef
Factors Related to Suicidal Ideation by Gender and Age Group in Korean Adults
Eun Young Kim, Yong Whi Jeong, Jihye Lim, Dae Ryong Kang
Journal of Korean Medical Science.2023;[Epub]     CrossRef
A machine learning approach to identification of self-harm and suicidal ideation among military and police Veterans
Sinisa Colic, Jiang Chen He, J. Don Richardson, Kate St. Cyr, James P. Reilly, Gary M. Hasey
Journal of Military, Veteran and Family Health.2022; 8(1): 56.     CrossRef
Machine learning for suicidal ideation identification: A systematic literature review
Wesllei Felipe Heckler, Juliano Varella de Carvalho, Jorge Luis Victória Barbosa
Computers in Human Behavior.2022; 128: 107095.     CrossRef
The Development of a Suicidal Ideation Predictive Model for Community-Dwelling Elderly Aged >55 Years
Kyoung-Sae Na, Zong Woo Geem, Seo-Eun Cho
Neuropsychiatric Disease and Treatment.2022; Volume 18: 163.     CrossRef
A machine-learning model to predict suicide risk in Japan based on national survey data
Po-Han Chou, Shao-Cheng Wang, Chi-Shin Wu, Masaru Horikoshi, Masaya Ito
Frontiers in Psychiatry.2022;[Epub]     CrossRef
Suicidal behaviour prediction models using machine learning techniques: A systematic review
Noratikah Nordin, Zurinahni Zainol, Mohd Halim Mohd Noor, Lai Fong Chan
Artificial Intelligence in Medicine.2022; 132: 102395.     CrossRef
Machine learning prediction of suicidal ideation, planning, and attempt among Korean adults: A population-based study
Jeongyoon Lee, Tae-Young Pak
SSM - Population Health.2022; 19: 101231.     CrossRef
Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models
Theyazn H. H. Aldhyani, Saleh Nagi Alsubari, Ali Saleh Alshebami, Hasan Alkahtani, Zeyad A. T. Ahmed
International Journal of Environmental Research and Public Health.2022; 19(19): 12635.     CrossRef
Implementing Precision Psychiatry: A Systematic Review of Individualized Prediction Models for Clinical Practice
Gonzalo Salazar de Pablo, Erich Studerus, Julio Vaquerizo-Serrano, Jessica Irving, Ana Catalan, Dominic Oliver, Helen Baldwin, Andrea Danese, Seena Fazel, Ewout W Steyerberg, Daniel Stahl, Paolo Fusar-Poli
Schizophrenia Bulletin.2021; 47(2): 284.     CrossRef
Accuracy of individual and combined risk-scale items in the prediction of repetition of self-harm: multicentre prospective cohort study
Anna Kathryn Taylor, Sarah Steeg, Leah Quinlivan, David Gunnell, Keith Hawton, Nav Kapur
BJPsych Open.2021;[Epub]     CrossRef
A Comprehensive Review of Computer-Aided Diagnosis of Major Mental and Neurological Disorders and Suicide: A Biostatistical Perspective on Data Mining
Mahsa Mansourian, Sadaf Khademi, Hamid Reza Marateb
Diagnostics.2021; 11(3): 393.     CrossRef
Which PHQ-9 Items Can Effectively Screen for Suicide? Machine Learning Approaches
Sunhae Kim, Hye-Kyung Lee, Kounseok Lee
International Journal of Environmental Research and Public Health.2021; 18(7): 3339.     CrossRef
A comparative study of machine learning techniques for suicide attempts predictive model
Noratikah Nordin, Zurinahni Zainol, Mohd Halim Mohd Noor, Chan Lai Fong
Health Informatics Journal.2021; 27(1): 146045822198939.     CrossRef
Identification of Suicidal Ideation in the Canadian Community Health Survey—Mental Health Component Using Deep Learning
Sneha Desai, Myriam Tanguay-Sela, David Benrimoh, Robert Fratila, Eleanor Brown, Kelly Perlman, Ann John, Marcos DelPozo-Banos, Nancy Low, Sonia Israel, Lisa Palladini, Gustavo Turecki
Frontiers in Artificial Intelligence.2021;[Epub]     CrossRef
Detecting suicidal risk using MMPI-2 based on machine learning algorithm
Sunhae Kim, Hye-Kyung Lee, Kounseok Lee
Scientific Reports.2021;[Epub]     CrossRef
Comparing machine learning to a rule-based approach for predicting suicidal behavior among adolescents: Results from a longitudinal population-based survey
C.L. van Vuuren, K. van Mens, D. de Beurs, J. Lokkerbol, M.F. van der Wal, P. Cuijpers, M.J.M. Chinapaw
Journal of Affective Disorders.2021; 295: 1415.     CrossRef
Screening for Depression in Mobile Devices Using Patient Health Questionnaire-9 (PHQ-9) Data: A Diagnostic Meta-Analysis via Machine Learning Methods
Sunhae Kim, Kounseok Lee
Neuropsychiatric Disease and Treatment.2021; Volume 17: 3415.     CrossRef
Psychological Autopsy and Forensic Considerations in Completed Suicide of the SARS-CoV-2 Infected Patients. A Case Series and Literature Review
Roxana-Mihaela Crisan, Ciprian Ionut Bacila, Bogdan Neamtu, Adrian Nicolae Cristian, Elena Topîrcean, Adriana Popescu, Silviu Morar
Applied Sciences.2021; 11(23): 11547.     CrossRef
Veri Madenciliği ve Makine Öğrenimi Yaklaşımlarının Karşılaştırılması: Tekstil Sektöründe bir Uygulama
Filiz ERSÖZ, Yasemin ÇINAR
European Journal of Science and Technology.2021;[Epub]     CrossRef
Discovering the Unclassified Suicide Cases Among Undetermined Drug Overdose Deaths Using Machine Learning Techniques
Daphne Liu, Mia Yu, Jeffrey Duncan, Anna Fondario, Hadi Kharrazi, Paul S. Nestadt
Suicide and Life-Threatening Behavior.2020; 50(2): 333.     CrossRef
Applications of Artificial Intelligence Methodologies to Behavioral and Social Sciences
Mihaela Robila, Stefan A. Robila
Journal of Child and Family Studies.2020; 29(10): 2954.     CrossRef
Early-life stressful events and suicide attempt in schizophrenia: Machine learning models
Samia Tasmim, Oluwagbenga Dada, Kevin Z Wang, Ali Bani-Fatemi, John Strauss, Christopher Adanty, Ariel Graff, Philip Gerretsen, Clement Zai, Carol Borlido, Vincenzo De Luca
Schizophrenia Research.2020; 218: 329.     CrossRef
Development of an early-warning system for high-risk patients for suicide attempt using deep learning and electronic health records
Le Zheng, Oliver Wang, Shiying Hao, Chengyin Ye, Modi Liu, Minjie Xia, Alex N. Sabo, Liliana Markovic, Frank Stearns, Laura Kanov, Karl G. Sylvester, Eric Widen, Doff B. McElhinney, Wei Zhang, Jiayu Liao, Xuefeng B. Ling
Translational Psychiatry.2020;[Epub]     CrossRef
Artificial Intelligence and Suicide Prevention: A Systematic Review of Machine Learning Investigations
Rebecca A. Bernert, Amanda M. Hilberg, Ruth Melia, Jane Paik Kim, Nigam H. Shah, Freddy Abnousi
International Journal of Environmental Research and Public Health.2020; 17(16): 5929.     CrossRef
The utility of artificial intelligence in suicide risk prediction and the management of suicidal behaviors
Trehani M Fonseka, Venkat Bhat, Sidney H Kennedy
Australian & New Zealand Journal of Psychiatry.2019; 53(10): 954.     CrossRef
Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models
Sameera Senanayake, Nicole White, Nicholas Graves, Helen Healy, Keshwar Baboolal, Sanjeewa Kularatna
International Journal of Medical Informatics.2019; 130: 103957.     CrossRef
Detection of Suicide Attempters among Suicide Ideators Using Machine Learning
Seunghyong Ryu, Hyeongrae Lee, Dong-Kyun Lee, Sung-Wan Kim, Chul-Eung Kim
Psychiatry Investigation.2019; 16(8): 588.     CrossRef
How to Develop Psychiatry Investigation into a World Class Journal
Heon-Jeong Lee
Psychiatry Investigation.2019; 16(12): 875.     CrossRef